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I. Report Summary 

Systems driven far from equilibrium are pervasive and important. Whether the specific external influence 
is heat flow (Rayleigh-Benard convection in the lab, cloud layers in the atmosphere), centrifugal force 
(Taylor-Couette flow between rotating cylinders, flow along curved turbine blades), or reacting chemicals 
(Belousov-Zhabotinskii reaction, a brain), a striking feature of these systems is that they can generate 
patterns in space and in time, often as a result of an instability of some simple basic state. These patterns 
may be technologically useful or harmful, but in either case it is crucially important to understand the 
fundamental physics of the nonlinearities involved in order to control or to best utilize the particular 
system. 

Some pattern features are common to large classes of systems; there is some universality in the behavior, 
regardless of the underlying system-specific physics. This understanding has come about largely through 
the application of simple model equations to carefully designed experiments. For example, it has been 
shown repeatedly in detailed, quantitative experiments, that amplitude equations (non-equilibrium versions 
of the Ginzburg-Landau equation, familiar from the mean field approximation for equilibrium phase 
transitions), are adequate to describe the behavior near the onset of the first pattern beyond the basic 
state. But this approach has a limited validity. Once a system has been driven away from a pattern's 
onset by a significant amount, amplitude equations do not work. An alternative which does not suffer 
from this limitation, phase dynamics, is an approach to the modeling of the long-wavelength, low- 
frequency excitations of a pattern. Phase dynamics is thus a generalized hydrodynamics of patterns; 
Taylor vortices or other fundamental pattern units such as convection cells or turbulent spirals are 
analogous to the atoms of equilibrium systems. Likewise, the excitations of these patterns are analogous 
to the modes of oscillation of an equilibrium system, such as phonons in a crystal lattice. 

Under ONR support we carried out an experimental study of the generalized hydrodynamic behavior of 
cellular patterns far from onset. We showed the basic qualitative effectiveness of the phase dynamics 
approach in modeling this behavior for both ordered and turbulent flows in the Taylor-Couette system. 
Although the experiments involved a specific system, the phase equations that describe them are 
determined by the pattern symmetries, so the results should generalize to other systems. 

In addition we performed a series of experiments on flows in the Taylor-Dean system, the flow between 
independently rotating concentric cylinders with a partially filled gap. By adjusting the rotation speeds 
of the two cylinders it is possible to tune the velocity profile across the gap over a wide range, and hence 
produce a large variety of flow patterns. We studied in detail several novel patterns and their evolution 
upon increasing the relevant control parameter. 

Finally, in a different area entirely, we studied two distinct liquid crystal systems. The first was a liquid 
crystal layer subjected to a noisy control parameter, which resulted in a state diagram in which the 
statistical probability density characteristics served as the distinguishing feature of the different states. 
The second was a study of phase winding in a thin layer of a liquid crystal subjected to rotationally 
induced shear. 

The outcome of this project is a better understanding of highly nonequilibrium ordered and turbulent 
patterns in both simple and complex fluid systems, and of the ability of phase dynamics to model long- 
wavelength low-frequency behaviors in some cases. 



II. Dynamics in the Taylor-Couette System 

1. Overview 

The principal work of our laboratory has been on pattern formation and dynamics in the Taylor-Couette 
system, the flow between independently rotating concentric cylinders. This work was supported by ONR 
contract N00014-86-K-0071 and grant N00014-89-J-1352. We have extended the survey work begun by 
Coles(1965), and Andereck, Liu and Swinney (1986) into regions left unexplored in those previous 
studies. A now well-known result from all of these studies is that, approximately speaking, the base flow 
is unstable to time-independent Taylor vortices when the cylinders rotate in the same direction, and is 
unstable to spirals when they rotate in opposite directions. At least for the Taylor vortex flow, it had 
been clear for some time that by using different procedures for ramping the rotation speeds, different 
states of flow could be produced. The different states were characterized by different numbers of 
vortices, or otherwise stated, by the axial wavelength of the pattern. Coles (1965) had shown that 
different secondary flows could then result, depending on the axial wavelength of the vortex pattern. 
Andereck, Liu and Swinney (1986) took note of this and restricted their survey to those secondary flows 
arising for Taylor vortex patterns that were close to the critical wavelength. We have now undertaken 
a more detailed examination of the secondary flows when the axial wavelength is different from critical. 
Some of this work has appeared, notably that on our study of confined states (Baxter and Andereck 
(1986) (reproduced in Appendix A, on page A-l), Andereck and Baxter (1988)), as discussed in Section 
II.2. This experiment has now been interpreted in terms of a phase dynamics framework. We will also 
briefly describe, in Section II.3, our survey work on the co-rotating regime. An article on this work is 
in preparation (Hegseth, Baxter and Andereck (1995)). 

In Section II.4 we will discuss our testing of the predictions of phase dynamics for Taylor vortices (Wu 
and Andereck (1991a) & A-5), wavy Taylor vortices (Wu and Andereck (1991b) & A-9) and turbulent 
Taylor vortices (Wu, Andereck and Brand (1992) & A-13). Phase dynamics is essentially the long- 
wavelength, low-frequency behavior of the phase of patterns, a hydrodynamic description of their modes 
that should apply far from onset. In Section II.5 we will describe our study of a highly turbulent pattern 
occurring in the counter-rotating cylinders regime, spiral turbulence. As part of this work we attempted 
to describe the spiral's behavior in terms of a simple phase equation (Hegseth, Andereck, Hayot and 
Pomeau (1989) & A-40). This was the first attempt to study the hydrodynamic behavior of anything 
other than simple, approximately periodic structures. 

2. Confined States in the Taylor-Couette System 

Confined states, which consist of traveling convection rolls in a small region, surrounded by a pattern- 
free background, have been found in electro-hydrodynamic and binary fluid convection. Baxter and 
Andereck (1986) (A-l) reported for the first time a different phenomenon, the appearance of confined 
states, or "dynamical domains", in co-rotating cylinders flows (see Andereck, Liu and Swinney (1986) 
for a survey of the primary flow states). The system is started with a Taylor vortex axial wavelength 
larger than critical, and then the inner cylinder speed is slowly ramped to a larger value. Typically, the 
flow changes from Taylor vortex flow to wavy vortex flow, to twists, to twists with wavy inflow 
boundaries, to dynamical domains, to uniform turbulent Taylor vortices, and then back to domains. The 
characteristic feature of a state with multiple dynamical domains is that there are regions of differing axial 
wavelength along the axis of the system, and hence differing secondary flows. A dramatic example of 
this is shown on page A-l, in which a large axial wavelength patch supports turbulent flow, while 
surrounded by laminar, wavy vortices.   The growth of these regions is evident in a plot of the axial 



wavelength of the individual vortex pairs, as shown in Figure 3 on page A-2. The initial uniform state 
is shown at e (relative to Taylor vortex onset with the Ro>0) of about 1.25 (inner cylinder Reynolds 
number Ri= 1000), the appearance of the first domains at about 1.62 (Rj= 1300), and the re-emergence 
of domains at about 2.38 (Rj = 1900). 

Since this work was completed similar results have been obtained in slot convection by Dubois, Berge 
and Petrov (1990), Dubois, DaSilva, Daviaud, Berge and Petrov (1989) and Hegseth, Vince, Dubois and 
Berge (1992). The patterns in their system are not always subject to the complicating secondary 
instabilities found for Taylor flows. In their case it is sometimes observed that the smaller rolls oscillate, 
but the same basic domain structure is observed in any case. In addition, some theoretical progress has 
been made in describing both the Benard and Taylor confined states within the framework of phase 
dynamics by Brand and Deissler (1989), Brand (1990) and Deissler, Lee and Brand (1990), and in 
parametrically excited standing waves by Riecke (1990a & b). By including higher order terms in the 
phase equation they find a generalized potential with two local minima, each corresponding to a different 
wavevector, thus leading to the possibility of confined regions of different vortex sizes. Brand (1990) 
points out that pinning boundary conditions are probably necessary for observation of the confined states. 
In the absence of such boundaries the confined states should be at most neutrally stable. 

3. Axial Wavelength Dependence of Flows in the Taylor System 

One of the striking, and now well-established, features of nonlinear systems is the multiplicity of flow 
states possible for given values of the control parameters. This was recognized and emphasized by Coles 
(1965) in his ground-breaking study of the Taylor system, and in particular the wavy vortex state. 
Andereck, Dickman and Swinney (1983) and Andereck, Liu and Swinney (1986) showed that there were 
several new states of flow, all bifurcating from Taylor vortices, when the inner and outer cylinders rotate 
in the same direction. In these experiments the axial wavelength was kept near the critical value, 
recognizing that this would be the situation possibly most amenable to modeling, and closest to what 
might be considered the preferred set of transitions. It was clear at the time, as described in Andereck, 
Dickman and Swinney (1983), that the onset of secondary flows depended on the axial wavelength, but 
no attempt was made to study this in any systematic manner. Under ONR funding we made such a 
survey and found certain trends which have come under theoretical and numerical study (Nagata (1986), 
Nagata (1988) and Weisshaar, Busse and Nagata (1991)). 

Experimentally there exist definite trends in the flow state diagrams. The usual wavy vortex flow is 
found for all of the average axial wavelengths we worked with, but "twisted" vortices are not found for 
small axial wavelengths. The twists are the only other primary instability for large wavelengths. The 
results on twisted vortices agree rather well with the numerical modeling of Weisshaar et al (1991). In 
Hegseth, Andereck and Baxter (1995) we describe some possible mechanisms of instability leading to the 
different flow states, wavy inflow boundaries, wavy outflow boundaries and twists, based on our 
observations of the axial wavelength dependences and some general input on the velocity field from 
numerical investigations. 

4. Phase Dynamics of Taylor, Wavy and Turbulent Vortices 

The Navier-Stokes equations of classical fluid dynamics in principle provide the appropriate fundamental 
framework for describing the behavior of any flow state that can be produced with Newtonian fluids, just 
as the partition function should fully describe the behavior of any equilibrium system. However, the 
direct solution of these problems is often impractical, particularly when dealing with spatially extended 



systems. Therefore, various simplifications and approximations of these equations have been developed. 
One of the most successful is the Ginzburg-Landau expansion, which applies to equilibrium systems in 
the vicinity of a phase transition, and to nonequilibrium systems near a transition from one state to 
another. In the former case, it describes the behavior of the order parameter as, say, the temperature of 
the system is changed. In the latter case, the Ginzburg-Landau equation is recast as an amplitude 
equation, which describes the development of the amplitude of a pattern's velocity or concentration field 
near onset as some control parameter, such as an applied temperature gradient, is changed (see Ahlers 
(1991), Newell, Passot and Lega (1993), and Cross and Hohenberg (1993) for wide-ranging discussions 
of this formalism and its application to experiments). However, since this approach is applicable only 
near the onset of patterns, its overall usefulness is severely limited, since most of the parameter space 
for any given system usually is far from any pattern onset. Therefore, a different approach has been 
developed, usually called phase dynamics (see, for example, the seminal paper by Pomeau and Manneville 
(1979) and the recent general reviews by Brand (1988) and Cross and Hohenberg (1993)), which may 
apply to patterns both near and far from transitions. To begin our discussion, consider that a pattern may 
be described at its onset as having some characteristic critical uniform wavevector. Away from onset, 
if one thinks of a pattern as having locally an amplitude and a phase, the phase roughly speaking 
corresponding to the deviation of the pattern's wavevector from uniformity, then it is possible to write 
down equations describing the slow spatial and temporal dynamics of the phase itself. The practical 
advantages of this approach are three-fold: 

• First, the phase equations are much simpler to solve than the Navier-Stokes equations. 
• Second, they should be applicable far from the onset of patterns. Indeed, there is evidence that 

they apply even to turbulent flows (Wu, Andereck and Brand (1992) & A-13), where it is not at 
all clear that the amplitude equation formalism will be useful. 

• Third, it is possible to write down phase equations by using the symmetries of the flow state 
under study. Since knowledge of the underlying microscopic processes, which determine the 
coefficients in the equation, is not essential, the important qualitative results obtained for one 
system should generalize to similar patterns in quite different systems. Thus, phase dynamics 
seeks to be a generalized hydrodynamics of patterns, in which the details of the microscopic 
interactions (described by the Navier-Stokes equations in our case) between the "atoms" of the 
system (rolls, cells) are smoothed over by looking only at long-wavelength, low-frequency 
behavior (which is generalized hydrodynamics, as discussed by Reichl (1980) and by Brand 
(1988)). 

Our goal in this field must always be to produce a better understanding of pattern formation and dynamic 
behavior, and the onset of chaotic and turbulent flows. In this context, suppose that we have succeeded 
in writing down the generalized hydrodynamic equations for a given pattern. What should these equations 
tell us about that system? To answer this we appeal to our well-developed understanding of equilibrium 
systems. By analogy then, a uniform pattern near onset corresponds to a ground state, the zero 
temperature limit for that pattern. Most of the studies of patterns have concentrated on just this situation, 
the initial pattern that forms after increasing some control parameter. But the ground state is not the 
whole picture. Equilibrium systems support a spectrum of excitations, such as phonons, magnons and 
rotons, and the same should be true of patterns in nonequilibrium systems. Generalized hydrodynamics, 
as exemplified by phase dynamics, should yield both static pattern distortions and the dynamic excitations 
that correspond to the "zoo" of equilibrium excitations (Brand (1988)). From these we can determine 
the analogues of elastic constants and sound absorption. Such excitations may also play a roll in the 
transition to spatial-temporal chaos and turbulence, and in the final approach of a system to its steady 
state following some perturbation (Tabeling (1983) and Brand (1994)).   Furthermore, changes in phase 



diffusion coefficients signal the onset of pattern instabilities (for example, Fourtune, Rappel and Rabaud 
(1994) have found that the diffusion coefficient drops near the Eckhaus instability for a viscous fingering 
experiment, while it diverges rapidly near the onset of a parity-breaking instability). It is essential that 
we understand how patterns respond under changing external constraints and phase dynamics may give 
us a basic guide to this behavior. With ONR support we performed several experiments that examined 
these issues for several selected flow patterns, motivated in part by specific novel effects predicted by 
phase dynamics. 

During the grant period we began an experimental study of the long-wavelength, low-frequency dynamics 
of several basic cellular and turbulent flow states in the Taylor-Couette system. Our intent was three- 
fold: to search for novel pattern behaviors, to test specific phase dynamics predictions for various flows 
and to investigate the applicability of this approach to turbulent flows. The importance of this work is 
clear, since unlike amplitude equations, the phase dynamics methodology should be useful far from the 
onset of an instability. But relatively few experiments have been performed that are capable of testing 
it.  Pioneering work in this area has been performed in our laboratory. 

The Taylor-Couette system produces a large variety of ordered and turbulent flow patterns (see Coles 
(1965), Snyder (1970), and Andereck, Liu and Swinney (1986). With the outer cylinder at rest the 
patterns are essentially as follows, with increasing rotation speed of the inner cylinder: purely azimuthal 
base flow, Taylor vortex flow (time-independent), wavy vortex flow (one frequency), modulated wavy 
vortex flow (two incommensurate frequencies), chaotic vortices (two frequencies and a noise component), 
and turbulent Taylor vortex flow. We studied experimentally the low-frequency, long-wavelength 
dynamics of Taylor vortices, wavy vortices and turbulent vortices by mechanically perturbing the pattern 
at one end of the cylinders and then capturing the response of the Kalliroscope-visualized vortices using 
a CCD array camera interfaced to a microcomputer. By plotting the vortex boundary positions as a 
function of time we extracted a great deal of information, including phase diffusion coefficients. In a real 
sense this procedure is analogous to the usual perturbative methods used in equilibrium systems. For 
example, phonons may be excited in crystals through inelastic neutron scattering or x-ray scattering. 
Some information about systems can be obtained by observing their steady-state behavior, but even more 
may be learned by observing their response to an external perturbation. We also applied the phase 
dynamics approach to spiral turbulence, and others have interpreted our work on confined states in terms 
of phase dynamics. Although our work already has ranged over several distinctly different types of flows 
and behaviors, much remains to be explored. 

Our first experiments were on Taylor vortex flow, a state with only one phase variable \p, associated with 
the positions of the vortices along the axis of the system. As predicted by Pomeau and Manneville (1979) 
and Tabeling (1983) the dynamics of Taylor vortices should be described by a simple one-dimensional 
diffusion equation: 

where D II is a diffusion coefficient that depends on various parameters of the problem. To test these 
predictions in detail we applied sinusoidal and step perturbations to the flows through motion of one of 
the end boundaries of the system (see Figure 2a and Wu and Andereck (1991a) (A-5) and (1992a) (A-26); 
this method was adapted by Fourtune, Rappel and Rabaud (1994) for viscous fingering in the printer's 
instability). In the former case the vortices oscillated sinusoidally as well, but with an amplitude that 
dropped off exponentially with distance as the diffusion equation predicts (see Figure 5 on page A-31). 



For a step function the response is proportional to the error function complement with an argument 
containing the distance of the vortex from the boundary over the square root of time. Our measurements 
confirmed the qualitative predictions from the phase diffusion equation. In addition the dependence of 
the diffusion coefficient on the base wavevector was consistent with the form given above, even though 
our experiment was performed outside the range of strict validity of the expression, and the values found 
for DII are reasonably consistent with those computed by Dominguez-Lerma et al. (1984) and Riecke 
(1990c). 

The next stage of our research concerned the phase dynamics of wavy vortex flow (WVF). As discussed 
by Brand and Cross (1983) there are two relevant phase variables in WVF, an axial variable \p and an 
azimuthal variable <p associated with the positions of the waves on the vortices. They argued that these 
variables should be coupled through a pair of diffusion equations. When there is strong coupling the 
equations reduce to the characteristic form of wave equations, as for example the one for \p: 

d2$ __C2 d2i|f _0 

at2      dz2 

where c2 depends on the coupling between the two phases. Thus we should see propagating modes in 
WVF, a qualitatively different behavior from that possible in Taylor vortex flow or related cellular flows 
such as those in Benard convection. (This is akin to the situation in certain equilibrium systems. 
Consider, for example, liquid helium: For Hel heat transport is diffusive, while in Hell there are 
superfluid and normal fluid components and second sound, a ballistic transport of heat, can exist.) Of 
course, in the weak coupling limit the system behaves diffusively. Changing from the weak to the strong 
limit is achieved by increasing the vortex sizes, the number of azimuthal waves, and the wave amplitude, 
variables that are to some extent under experimental control. 

Our principal result is that we have observed both propagating and diffusive modes in WVF. Figure 11 
on page A-34 shows the oscillations of the averaged vortex boundaries in the diffusive (a) and propagating 
(b) limits. Figure 12a on page A-35 shows a plot of the amplitude vs axial position for the diffusive (x), 
propagating (D) and very low frequency propagating (•) behavior. End effects are important in the 
propagating case, leading to diffusive exponential decrease of the amplitude near the oscillating boundary, 
a region of relatively lower vortex wave amplitude. In summary, we have provided the first evidence 
for the existence of a propagating mode, as predicted by phase dynamics, in a system far from 
equilibrium. However, it is not the only system in which such modes may be expected. For example, 
a propagating mode with the same governing phase equation has been found in a theoretical investigation 
(Massaguer (1994)) of finite amplitude convection in a large aspect ratio system. 

The phase dynamics approach has usually been thought of as applicable only to ordered patterns. Of 
course, chaotic and turbulent flows are abundant and it would be useful to have some ability to use simple 
equations that successfully describe at least large scale features of the flow. Therefore we decided to see 
if phase dynamics might apply to a turbulent state. It was a relatively straightforward extension of our 
work on Taylor vortices and WVF to go on to study turbulent vortices. The basic result is that for 
situations on the order of 20 times critical the phase perturbation behaves diffusively, if we take an 
average of the vortex boundary positions over a time scale long compared with the turbulent fluctuations, 
but small compared with the perturbation period (Wu, Andereck and Brand (1992) (A-13) and Wu and 
Andereck (1992a) (A-26)). The diffusion coefficient is more than an order of magnitude greater than for 
the Taylor vortex case, as shown by the much slower decrease in amplitude displayed in Figure 20a on 
page A-38.   In this figure the x's represent turbulent Taylor vortices, while the D's are from laminar 



Taylor vortex flow.  We attribute this to the enhanced momentum transport due to the turbulence. 

To conclude, our experimental studies of the Taylor vortex system have confirmed phase dynamics 
predictions for more complex flows than previously studied. We have greatly extended the range of 
applicability of the phase dynamics approach by our work on turbulent vortices. Related work on phase 
dynamics of turbulent flow is discussed in the next section. 

5. Spiral Turbulence and Phase Dynamics 

Flows between counter-rotating cylinders are notably different from those we have just discussed. The 
primary bifurcation from the base flow, for large enough outer cylinder speed, is to laminar spirals rather 
than time-independent Taylor vortices. At large outer cylinder speeds the region of existence of the 
spirals is small (Andereck et al (1986)), and as the inner cylinder speed increases there is a subcritical 
instability to the extraordinary spiral turbulence pattern (Coles (1965), Coles and Van Atta (1966) and 
(1967), Van Atta (1966), and Andereck et al (1986)). Spiral turbulence, as shown in Figure 1 on page 
A-40, consists of a barber-pole pattern of laminar and turbulent bands that rotates at a well-defined 
angular velocity. It is particularly interesting among fluid dynamical patterns because it mixes the small 
scale (microscale) turbulent behavior with a well-ordered structure at large scales. It is the prototypical 
"coherent structure", examples of which have attracted much interest in recent years. 

As is generally true for turbulent flows, the understanding of this pattern has been limited. Our 
experiments (Hegseth, Andereck, Hayot and Pomeau (1989) (A-40) and (1991) (A-44)) revealed some 
previously unobserved features of spiral turbulence, which have formed the basis for a phase dynamics 
model of the pattern. The work was carried out primarily with a T=73 system, much longer than in 
previous investigations. This permitted us to observe a variation in the pitch of the spiral (the angle with 
respect to the ends of the system) over the length of the system, the pitch being lower at the end of the 
system away from which the spiral appears to be moving. Furthermore, if the upper end of the system 
is a free surface the average pitch is dramatically different for spirals moving away from the free surface. 
These two basic observations can be incorporated in a phase dynamics model that should describe the 
slow time, long wavelength variations of the pattern.  This equation is 

(pt(z, t) + v<pz(z, t) =£><pzz(z, t) 

where we interpret <p as the mean azimuthal position of the spiral at height z and time t. (This is a phase 
in the sense that a uniform shift of <p has no dynamical effect, given the axisymmetry of Taylor-Couette 
flow.) v is the apparent axial velocity of the spiral in the laboratory frame and D is a phase diffusion 
coefficient. The basic solution is an exponential function of z plus a linear function of vt-z. Applying 
boundary conditions, which are assumed to be different at the "emitting" and "absorbing" ends, we have 
the general solution 

<p(z, t)=^(vt-z)+(p0e
(vz/D) 



where w and y?0 are constants defined as 

v l-e1 

with a = <pz and )3 = v?z, the boundary conditions on <p. Should «=/S then we would have a constant pitch. 
Since the top and bottom of the system are not symmetric with respect to the spiral we would not expect 
equality and hence the pitch variation with z. Also, with a free upper surface there is an even more 
extreme difference between a and 0, which is born out by the experiment. Thus, we have been able to 
describe the large-scale variations in the spiral using an extremely simple phase dynamics modeling 
procedure. 

A further result on spiral turbulence is that the spiral is relatively more unstable in longer systems. In 
fact, for R =-8000 (a higher speed than for the basic work discussed above) a simple spiral pattern could 
be found only at very low aspect ratios. At large T we found only a "broken" spiral, with coherence only 
on the order of a cylinder diameter or two. This instability is not contained within the phase dynamics 
model, and probably involves an influence of the secondary flow generated by the existence of the 
turbulent spiral. 



III. Pattern Formation in the Taylor-Dean System 

1. Introduction and Flow State Survey 

The flow between rotating concentric cylinders is very special, having rotational symmetry as well as 
translational symmetry along the axis. This leads to definite restrictions on the types of flows that are 
possible, and on the detailed dynamics of those flows. We have conducted an investigation into the types 
of behavior possible if the rotational symmetry of the system is strongly broken, work which was 
supported by ONR Contract N00014-86-K-0071 and Grant N00014-89-J-1352 and a NATO travel grant. 
Breaking of the symmetry can be done in a variety of ways; our particular method was chosen because 
there are technological applications for variations of the flow, and because there were definite indications 
from previous work that interesting flows could be produced. The system consists of concentric rotating 
cylinders with the system axis horizontal. Instead of completely filling the gap with fluid, which would 
have simply reproduced the Taylor-Couette system, we only partially filled the system. This left an air 
gap at the top of the system, as shown in Figure 1 on page A-51. The fluid then responds to two 
influences, the rotation of the cylinders and the presence of the two free surfaces. In the region of the 
free surfaces the fluid must turn over, giving rise to a pressure driven flow back around the azimuthal 
direction. Thus we have a system which gives a combination of rotationally driven Couette flow and 
pressure driven Poiseuille flow around a curved channel, the so-called Dean flow. By rotating the 
cylinders at different rates it is possible to tune the base flow, away from the free surfaces, over a wide 
range of possibilities, and therefore select different types of instabilities for examination. 

Early work on this system is represented by Brewster, Grosberg and Nissan (1959), who studied the 
linear stability of the flow and performed basic experiments with a small aspect ratio apparatus. Our 
work commenced with a survey of the possible flow states, but with a large aspect ratio to reduce the 
influence of the ends of the system. The results of this survey were reported in Mutabazi, Hegseth, 
Andereck and Wesfreid (1988) (A-50). The principal result was the mapping of the bifurcations from 
the base flow for the whole range of combinations of inner and outer cylinder speeds, as shown in Figure 
2 on page A-52. In contrast to the case of Taylor-Couette flow, the initial instability with only the inner 
cylinder rotating is to time-dependent flow, the traveling inclined rolls. Stationary patterns are found with 
the outer cylinder rotating. The identification of the flows as "Dean" or "Taylor-Couette" relies on 
theoretical velocity field predictions made under a small gap approximation and ignoring free surface 
effects. In that approximation, a roughly linear profile was called Taylor-Couette like, and a parabolic 
profile was considered indicative of Dean flow since it was Poiseuille-like. An important aspect of the 
system is revealed in these profiles, namely that there may be more than one centrifugally unstable layer 
in the flow, a further contrast with the Taylor-Couette system and other simple systems. Some important 
aspects of the rich behavior of this system have subsequently been explored in our group, as detailed in 
the following sections. 

2. Spatial-Temporal Pattern Modulations 

Recently, systems which undergo a Hopf bifurcation from the base state have come under intense study, 
since the transition to spatial-temporal complexity may be more amenable to experimental and theoretical 
investigation than in, say, the Taylor-Couette system with the outer cylinder at rest. For Taylor-Dean 
flow, the traveling inclined rolls, which arise from the base flow via a Hopf bifurcation, indeed show a 
rapid increase in complexity with increasing inner cylinder rotation speed. We have carefully documented 
the transitions that occur and the characteristics of the states in Mutabazi, Hegseth, Andereck and 
Wesfreid (1990) (A-59) (see also Mutabazi, Wesfreid, Hegseth and Andereck (1991) (A-67)). 



The initial instability is a supercritical Hopf bifurcation. The rolls that result (see Figure 2 on page A-61) 
are much stronger on one side of the system than the other. Theoretical and experimental evidence 
indicates that there are recirculation rolls near one of the free surfaces, but not the other (Normand, 
Mutabazi and Wesfreid (1991)), and this asymmetry may be affecting the roll pattern. In much of what 
follows we will assume that the rolls constitute a 1-dimensional pattern, but the asymmetry implies that 
the detailed behavior certainly cannot be quite that simple. Typically there will be a defect in the pattern 
separating right and left traveling rolls. The defect itself moves erratically along the axial direction. 
Close to onset, within a range of the reduced Reynolds number eG [0.013,0.1], there is a long-wavelength 
modulation which becomes so pronounced that the roll velocity varies along the system and creation and 
annihilation events occur, leading to a weak phase turbulence. Such events have been found in binary- 
fluid convection (Kolodner, Bensimon and Surko (1988)) and electrohydrodynamic systems (Joets and 
Ribotta (1989)) as well. 

At slightly higher e the pattern undergoes a dramatic transition to a state modulated in space and time, 
with a wavelength of modulation that is about 3 rolls in extent. Again, the onset is free of hysteresis 
within our experimental uncertainty. This state and an associated space-time plot are shown in Figure 
2b on page A-61. An interesting feature of this pattern is that the modulation envelope itself moves in 
the axial direction, but much more slowly than the rolls, as shown in the figure. The modulation also 
produces distortions of the rolls along their axes, suggesting there may be some relationship to the wavy 
spirals in the Taylor-Couette system with counter-rotating cylinders (Andereck, Liu and Swinney (1986)). 
Spatial correlation measurements before the onset of the 3-rolls modulated state show a smooth 
exponentially decreasing envelope, whereas in the modulated state there is a strong correlation only at 
distances of about 3 rolls. This phenomenon can be considered to be the generation of traveling patches 
or triplets, periodic in space and time, separated by laminar-like zones. Just as for the simple roll state 
at lower e the roll-modulated pattern becomes subject to defect generation and eventually undergoes a 
transition to spatial-temporal disorder (see Figure 5 on page A-62). The origin of these modulations 
remains unknown. It is possible that it lies in competing instabilities in different sublayers of the flow, 
or in a wavy instability of the rolls themselves. 

3. Transition From Time-Dependent to Stationary Patterns 

Typical nonequilibrium systems undergo transitions to increasingly complex behaviors as the control 
parameter is increased. Eventually the flow becomes chaotic, possibly with spatial degrees of freedom 
excited, and then finally it may be called turbulent. Exceptions to this process are known. For example, 
in binary fluid mixtures there may be an initial transition to a traveling-waves state, followed by a 
subcritical instability to a stationary pattern upon an increase in the Rayleigh number (see Waiden, 
Kolodner, Passner and Surko (1985)). We have found that, with only the outer cylinder rotating, the 
Taylor-Dean system undergoes a transition from a traveling roll state to a stationary roll pattern through 
a process described below (Mutabazi and Andereck(1991) & A-63, Fourtune, Mutabazi and 
Andereck(1992) & A-74). 

Away from the end rings the flow consists of a purely azimuthal flow in the bulk, recirculation rolls near 
one free surface, and a boundary-layer flow near the other free surface. In the small-gap approximation 
the flow is parabolic, with an unstable layer of fluid between two stable layers. The unstable layer is in 
the Poiseuille region, thus indicating the instability will be of the Dean type. For very low rotation rates 
it is possible to detect Ekman cells near each end of the system. At higher rotation rates there are 
typically three regions in the flow: inclined rolls traveling to the right just outside the left Ekman region, 
laminar base flow, and inclined rolls traveling to the left just outside the right Ekman region.   The 
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transition to this state is subcritical, with a hysteresis of about 13% in the control parameter. At still 
higher rotation rates the system fills with traveling rolls, both large wavelength and small. At about 20% 
above the onset of the first traveling rolls the flow becomes stationary and axisymmetric after a transient 
relaxation period. This transition is also subcritical, with a 20% hysteresis. The front between the 
traveling rolls and the stationary Dean rolls progresses at a finite velocity, of the order of 1 cm/s. The 
phase velocity of the traveling rolls has a large discontinuity at the transition. 

We speculate that the time-dependent roll state may be a metastable phase driven ultimately by oscillations 
in the Ekman end regions. At some point the centrifugally driven instabilities in the bulk of the flow 
dominate and the stationary pattern can take over. 

The transition from a traveling roll pattern to a stationary pattern appears to be unusual for a 
hydrodynamic system. It has been observed previously only for binary fluid convection. This behavior 
is also in contrast to that found in related systems. Pure Dean vortex flow in curved-channel Poiseuille 
flow consists at the onset of stationary almost axisymmetric rolls, except in the entrance region (for 
example, Ligrani and Niver (1988)). The transition to turbulence proceeds through successive instabilities 
of the rolls. In the Taylor-Couette system with the outer cylinder rotating there are no roll forming 
instabilities, just a turbulent transition for very large rotation rates. Moreover, for general rotation rates 
of the cylinders the only potentially related behavior is the reemergent periodicity found in the midst of 
turbulence (Waiden and Donnelly (1979)). Linear stability theory does not show the basic features of 
the transition we have observed. It is possible that model equations with forcing might be used to mimic 
the influence of the Ekman end regions (as described in Fourtune, Mutabazi and Andereck (1992) & A- 

74). 

4. Drift Instability and Second Harmonic Generation 

Recently considerable attention has been given to one-dimensional extended systems in which oscillatory 
states as the first instability or as a secondary instability. It has been observed that the onset of a drifting 
pattern is sometimes associated with the appearance of a second harmonic in the stationary pattern. We 
have found such an instance in the Taylor-Dean system, where for rotation of both cylinders we find what 
seems to be a resonant 2:1 interaction between Dean rolls and Taylor vortices in adjacent fluid layers. 
These results are presented in Mutabazi and Andereck (1993) (A-81) and Mutabazi and Andereck (1995). 
Above the onset of the drift instability we found long-wavelength phase instabilities and eventually a 
wavelength-halving instability, which resulted in the appearance of small traveling rolls that eventually 
replace the original large Dean rolls. Several aspects of the complex dynamics of this system remain as 

theoretical challenges. 
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IV. Dynamics of Complex Fluids 

1. Noise-Induced Effects in Liquid Crystals 

The effects of imposing external noise on nonlinear systems has been investigated in diverse situations 
(see Horsthemke and Lefever (1984) and Griswold and Tough (1987)). Under certain conditions such 
systems may show extreme sensitivity to noise. In fact, it has been shown that multiplicative external 
noise can induce a variety of transitions, or affect those already present. A very interesting set of 
experiments has been performed on pattern-forming liquid crystal systems by Kai, Kai and Takata (1979), 
and Brand, Kai and Wakabayashi (1985). They found that imposing noise on the electrohydrodynamic 
instabilities shifted transition thresholds and stabilized the system against turbulence. However, 
quantitative agreement with existing theory was not possible, owing to the spatial complexity of the flow 
pattern. This difficulty has been overcome in our study of the Freedericksz transition of a nematic liquid 
crystal, which was suggested by the theoretical work of Horsthemke, Doering, Lefever and Chi (1985). 
The Freedericksz transition consists simply of a rotation of the nematic director under the influence of 
an imposed magnetic field; no roll pattern or other flow is generated. This simplifies the problem 
considerably, making possible a much more complete treatment than was possible for the 
electrohydrodynamic case. Our experimental results were reported in Wu and Andereck (1990) (A-86). 

The apparatus consisted of a layer of the nematic liquid crystal MBBA, sandwiched between two parallel 
glass plates. The plates had been coated with poly vinyl alcohol and rubbed to form grooves which forced 
an approximate initial alignment of the director along a particular axis. The magnetic field was in the 
plane of the layer, perpendicular to the initial director orientation. The magnetic field produced a torque 
on the molecules due to their magnetic anisotropy. This torque tends to align the molecules in the 
direction of the field, and it is opposed by viscous and elastic torques. The equation of force balance is 

x1ate=jc22azze+xa^
2sinecose 

where 0(z,t) is the angle between the director and the x axis, \ is the twist viscosity, K22 is the twist 
elastic constant, xa 

is tne anisotropic susceptibility, and H is the applied magnetic field. The boundary 
conditions are 0(±d/2)=O, where d is the sample thickness, which mean that the director is effectively 
pinned at the solid surfaces. With a slowly increasing H, we find that the director begins to rotate at a 
critical H; this is the Freedericksz transition for this geometry. Rotation of the director can be detected 
using a conoscopic microscope, which we coupled to a CCD array camera and image capture and 
processing system. The interference pattern turned with the rotation of the director, allowing 
determination of the value of 0 moment by moment. Our interest was in adding a noise component to 
H, which turns it into a stochastic parameter. With suitable simplifications one can then solve the 
Fokker-Planck equation for the probability density functions that characterize the behavior of the director. 

In our experiments we varied the average magnetic field, the correlation time of the noise, and its 
amplitude, and determined phase diagrams based on the observed transitions in the probability density 
functions of the rotation angle of the director. The imposed noise was dichotomous, a very special type, 
but one that was relatively easy to produce experimentally. The results are shown in the phase diagrams 
of Figure 2 on page A-88, in which we compare the experimental transition boundaries with those 
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predicted from analytic solutions of approximate equations and from numerical simulations we performed 
on the original equations. We found that the experiments and numerics agreed reasonably well for 
average magnetic field above Hc, while differing markedly below Hc, at least for large enough noise 
amplitude. This suggests that a more complete model, including possible spatial effects across the plane 
of the sample, and more realistic boundary conditions are used, potentially including boundary layers, 
might be necessary to account for all of our observations. 

2. Phase Winding in Liquid Crystal Layers 

In collaboration with P. E. Cladis of Bell Laboratories we performed an experiment on the formation of 
ring patterns in 2-d shear of a smectic-C liquid crystal layer. The shear was produced by inserting a 
small rotating rod into the center of a circular freely suspended film of 10E6. Upon rotation it was found 
that the resulting shear produced phase winding, the phase propagating outward from the rod. For low 
rotation rates and over small time intervals the phase progressed smoothly outward. However, under 
some conditions dislocations would form, which resulted in the onset of oscillations in the pattern. In 
a few cases this would actually collapse the ring pattern. At higher speeds still spatial-temporal chaos 
would result. These experimental observations were reported in Mutabazi, Finn, Gleeson, Goodby, 
Andereck and Cladis (1992) (A-90). 
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V. Conclusion 

Pattern-forming nonequilibrium systems are a vital part of the natural and man-made world. It is critical 
to understand the physics of the pattern formation process itself, and of the behavior of the patterns once 
they are formed, in order to control or to best use a particular system. One of the key advances in this 
field has been the recognition that simple model equations, such as amplitude equations and phase 
equations, can provide much insight into the physics and give very precise qualitative and quantitative 
agreement with experimental observations. The amplitude equation approach has been repeatedly verified 
in diverse systems, but is limited in its range of applicability to near pattern onset. The phase dynamics 
approach is not so limited, but relatively few experiments have been performed that are capable of testing 
it. One of the primary purposes of this project was to experimentally explore the long-wavelength, low- 
frequency limits of the dynamics of nonequilibrium patterns in various systems and, in the process, test 
the predictions of the phase dynamics approach as fully as possible. 

Pioneering experiments in our laboratory have shown the qualitative effectiveness of the phase dynamics 
approach in predicting the behavior of both ordered and turbulent vortex flows. Our experimental studies 
of the Taylor vortex system have confirmed several fundamental phase dynamics predictions for more 
complex flows than previously studied in other laboratories. We have obtained the first experimental 
evidence of a propagating phase mode. We have greatly extended the range of applicability of the phase 
dynamics approach by our work on turbulent vortices. We have even shown that phase dynamics may 
be used to describe the static deformations of a structure as exotic as spiral turbulence. Finally, we 
pioneered the work on pattern domains, which may also be a phase dynamics effect. 

In addition to our work on phase dynamics we have also explored the novel flow phenomena found in 
the Taylor-Dean system, the flow between coaxial, horizontal cylinders with a partially-fluid-filled gap. 
By adjusting the rotation speeds of the two cylinders it is possible to vary dramatically the velocity profile 
across the gap. Our work has shown that this system has a flow regime diagram that is very different 
from that for simple Taylor-Couette flow. We have investigated a few areas of the diagram in detail. 
For example, with only the inner cylinder rotating, the initial transition is to traveling inclined rolls, 
which in turn undergo an instability to a short-wavelength amplitude modulation shortly after onset, 
followed by a transition to spatial-temporal chaos. Under some circumstances it is possible to produce 
two distinct Rayleigh unstable layers, separated by stable flow. This can give rise to resonant mode 
interactions leading to drift instabilities and other unique effects. 

With the support of ONR we also began an investigation of the behavior of complex fluids, specifically 
liquid crystals. Our first project was on the effects of multiplicative external noise on one of the simplest 
transitions possible, the Freedericksz transition in a layer of nematic liquid crystal. It was found that 
various regimes of behavior could be produced by changing the characteristics of the noise. A second 
experiment, on the effects of shear flow on a freely suspended layer of smectic C liquid crystal, showed 
that ordered phase winding occurred so long as dislocations were not present. With dislocations, when 
rings of constant phase were broken, the behavior became disordered. 

The outcome of this fundamental research program is a deeper understanding of the dynamics of highly 
nonequilibrium ordered and turbulent patterns, and a greatly enhanced appreciation for the advantages 
and limitations of phase dynamics as a description of some of their long-wavelength low-frequency 
behaviors. This project has laid the groundwork for new investigations, both theoretical and 
experimental, on the hydrodynamic behavior of patterns far from their onset in a variety of closed and 
open systems involving both simple and complex fluids. 
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Novel flows between rotating concentric cylinders have been found in which domains of dynamically 
distinct behavior occur in spatially separate regions along the cylinders. Such flow states consist of Tay- 
lor vortices with a variety of secondary flows. The distinct secondary flows are correlated with variations 
in the axial wavelength of the vortex structure occurring over distances small compared with the system 
length. The results are compared with model systems that exhibit spatially nonuniform behavior and 
domain formation. 

PACS numbers: 47.20.-k, 47.20.Tg 

Much attention has been given in recent years to pat- 
tern formation and dynamic behavior in physical systems 
far from equilibrium. One of the most interesting results 
thus far is that the dynamics of certain small closed sys- 
tems can be characterized by measurements at a single 
point in physical space. This is the case for the circular 
Couette system at low inner-cylinder speeds when the 
outer cylinder is at rest; measurements at different axial 
locations show the same dynamics.1 Other studies at 
even lower inner-cylinder speeds have shown that end 
boundaries can induce smooth variations in Taylor- 
vortex sizes over distances comparable with the system 
length.2"4 However, spatial and temporal properties of 
the flows can be quite different with the outer cylinder 
rptating5"8 and therefore finite-length effects might also 
be different. We report here the first observations of 
spatial patterns, apparently induced by finite system size, 
which consist of stable, coexisting, dynamically distinct 
domains in flow between almost corotating cylinders (see 
Fig. 1). These domains are marked by different secon- 
dary flows and therefore a single-point measurement is 
insufficient to characterize the overall flow state. The 
secondary flows are correlated with pronounced, local- 
ized variations of the axial wavelength of the underlying 
Taylor-vortex structure. Such behavior is qualitatively 
different from that previously reported with the outer 
cylinder either at rest or rotating. In this Letter we will 
describe the conditions for occurrence of these unusual 
flows, give a preliminary characterization of them, and 
discuss the prospects for a theoretical treatment. 

The system consists of concentric rotating cylinders, 
the inner one of black Delrin plastic (radius r, — 5.267 
cm) and the outer one of polished Plexiglas (radius 
r„ —5.965 cm), giving a radius ratio rj=r,/r0 —0.883 and 
a gap d =r0 — r/ —0.698 cm. The upper and lower boun- 
daries were formed by Teflon rings attached to the outer 
cylinder, typically a distance h —20.94 cm apart, yield- 
ing an aspect ratio T—hld —30.0±0.3% (some runs 
were also made at T —70). The cylinders were driven by 
Compumotor stepping motors with a rotation-rate pre- 
cision of ± 0.01%; the inner-cylinder motor was connect- 

ed to a PDP-11/73 computer which controlled both the 
ramping rate and data acquisition. The angular veloci- 
ties ft, and ft0 of the inner and outer cylinders are 
scaled in terms of Reynolds numbers /?,-r,rfft,/v and 
R0—r0dft0/v, where v is the kinematic viscosity of the 
fluid. The experiments were performed in a tempera- 
ture-controlled room; the fluid temperature varied by no 
more than ±0.1 °C during a day. To visualize the flow 
we used 1%-by-volume Kalliroscope rheoscopic agent in 
distilled water. 

Data acquisition involved several techniques. Basic 
data were obtained by use of a 28-85-mm variable focal 
length lens to form an image of the flow on a 1024-pixel 
charge-coupled device (CCD) linear array interfaced 
through CAMAC to the computer. A record of the overall 
visual appearance was kept with a time-lapse video 
recorder capable of storing 72 h of images from a 
closed-circuit television camera. The visual record was 
compared with the output of the CCD camera to estab- 
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lish correlations between the secondary flows and the 
vortex sizes. Single-point time-series data were obtained 
with laser light reflected off the Kalliroscope flakes onto 
a photodiode detector; the resulting signal was digitized 
for processing with a fast-Fourier-transfrom routine. Fi- 
nally, some vortex-size measurements were made with 
use of a cathetometer to check the CCD results. 

Flow states were established with a specific average 
axial wavelength, defined as k — 2r/N, where N is the 
number of Taylor vortices. For most of the work X. was 
2.5, corresponding to 24 Taylor vortices in a system with 
aspect ratio 30. Various means may be used to produce 
the desired number of vortices7,8; for a fixed and low 
enough R0, a quasistatic ramping of /?, from zero pro- 
duces a X of 2.0, but rarJd ramping past the Taylor- 
vortex stability boundary can be used to produce a dif- 
ferent \. Once the desired vortex wavelength was 
achieved the system was stabilized at the initial /?, and 
R0 until a uniform vortex size was achieved throughout 
the working space. /?, was then slowly ramped up under 
computer control through the regions of interest with 
CCD data obtained at regular intervals. This procedure 
was repeated over a range of Ro. 

The CCD data were used to establish the degree of 
uniformity of the Taylor-vortex structure. To determine 

1000 

FIG. 2. Flow regime diagram for T-30. X-2.5. The 
dashed line at Ä« -693 gives the path along which the data of 
Fig. 3 were taken. The regions are as follows: (a) azimuthal 
flow, (b) Taylor-vortex flow, (c) wavy-vortex flow, (d) twists, 
(e) twists and wavy inflow boundaries, (f) dynamical domains, 
(g) uniform noisy wavelets and twists. Crosses indicate a tran- 
sition to nonuniform behavior. Solid lines are present to guide 
the eye. 
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the local vortex size it was necesary to average over the 
secondary structures present on the vortices. These 
secondary flows might be waves on the boundaries be- 
tween the vortices (wavy inflow or outflow boundary 
flows, or wavelets, small-amplitude waves on both boun- 
daries), or waves internal to the vortices (twists), or 
combinations of these and small-scale noisy structure.7,8 

The CCD array rapidly takes 300 one-dimensional im- 
ages (light-intensity profiles) aligned along the axis of 
the cylinders with each image covering the entire length 
of the system between the Teflon rings. Fifty of these 
axial slices are randomly chosen and then averaged. We 
are left with a nearly periodic signal in which minima 
correspond to vortex boundaries. The computer then lo- 
cates the minima and determines the vortex sizes. The 
data presented here represent measurements of vortex- 
pair sizes since that is consistent with typical system be- 
havior; similar secondary flows often occur in pairs of 
vortices sharing a common inflow boundary, and isolated 
vortices with secondary flows different from both 
nearest-neighbor vortices were not found. The cells ad- 
jacent to the top and bottom boundaries are consistently 
larger than the rest7,8 and are excluded from the 
analysis. We have observed, however, that they vary lit- 
tle in size over the ranges of Rt and Re considered here. 

Our principal results are summarized in Figs. 2-4. 
Figure 2 is a section of the flow regime diagram for 
T-30, and N -24 [letters (b)-(f) refer to this figure]. 
We stress that N does not change in any of the transi- 
tions we discuss. For 550^/?o5720 the system 
progresses from uniform Taylor-vortex flow (b) to the 
twist pattern (d) as /?, is increased. At higher /?, waves 
form on the inflow boundaries between the vortices, and 
the vortex sizes gradually become nonuniform (e). In 
this range of /?, fluctuations are seen in vortex sizes and 
secondary flows. The fluctuations cease as the next tran- 
sition is reached (f). Here the vortex-pair size distribu- 
tion becomes bimodal, and the flows on the different-size 
vortices change (the particular secondary flow on a vor- 

XXX) 1200 1400  „ 1600 1800      2000 

FIG. 3. Vortex-pair wavelengths obtained with a CCD ar- 
ray for R<, -693. Scatter in the uniform regimes is comparable 
with errors in computer fits of intensity minima in the raw 
data. 
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20 ^y^30 f/n, 
FIG. 4. Reflection spectra for a domain state with R<, —670 

and Ri -1900. (a) Large vortices, (b) small vortices. Primary 
sharp features are labeled as follows: /», twists; /„, wavy in- 
flow boundaries; /«, wavy outflow boundaries; fc, corkscrew; 
fie, inner cylinder. The background noise level is a factor of 
approximately 10 higher in (a) at high frequency. 

tex depends sensitively on the vortex size, but the large 
vortices typically have twists, waves on both boundaries, 
and some small-scale noisy structure, while the small 
vortices may have no visually obvious secondary struc- 
ture, or they may have a wave on the inflow boundary 
and weak twists). The large-vortex-pair axial wave- 
length X [= (distance between outflow boundaries of the 
pair)/*/] is found to be ~2.60, as compared with the 
small-pair X of —2.25. The 4 or 5 large vortex pairs are 
generally scattered throughout the system. As a result, 
significant wavelength variations occur over distances 
much smaller than the length of the cylinders. The onset 
of this regime is shown in Fig. 3, a plot of the local pair 
wavelength for /?„—693. A persistent pattern with a 
distinct bimodal size distribution forms above /?, ~ 1320. 
At A,—-1560 the system returns to axial uniformity (g). 
On every vortex in this regime there are weak twists, 
wavy inflow and outflow boundaries, and greater levels 
of small-length-scale noisy structure. 

At /f, — 1860 the system again becomes unstable to 
domain formation (f) with the large-vortex-pair X —3.0 
and the small-vortex-pair X — 2.2. Figure 1 is typical of 
the visual appearance of such a flow state.   The large 

vortices resemble those in the uniform regime (g) at 
lower Rh with more pronounced small-scale structure, 
while flow in the small vortices appears to be relatively 
noise-free. Some small vortices may have periodic struc- 
tures, such as a corkscrew pattern.* The spectra of Fig. 
4 were obtained in this regime; the sharp features are 
different in the large and small vortices, and the broad 
background noise level is nearly an order of magnitude 
greater in the wide-vortex case. If R<, > 720, the nonuni- 
formity sets in as for lower R„, but the disparity between 
the largest and smallest vortices grows continuously until 
we reach the highly nonuniform flows shown in Fig. 1; 
no uniform regime interrupts the evolution. The 
uniform-nonuniform transitions all appear to be hys- 
teretic, with AÄ, as large as 125. For all values of R0 

the flow gradually evolves at higher Rt to states in which 
the flow consists entirely of relatively uniform turbulent 
Taylor vortices. 

Several points need to be emphasized about these 
flows. They are not transients; nonuniform flow states 
monitored for up to 48 h have never relaxed to a uniform 
state, although some rearrangement of the pattern can 
occur. They are also not due to cylinder defects since 
the domains do not always occur at the same locations 
when runs are duplicated. We have repeated some of the 
observations at various ramping rates; so long as our di- 
mensionless average acceleration9 a' = (dRi/dt)(Ld/v) 
was below — 20 no differences were noticed in either the 
flow states formed or the approximate onset of the insta- 
bilities. Some runs were made with r—70 and N -56 to 
look for aspect-ratio effects, and the same qualitative re- 
sults were found as for T—30. Some measurements 
were made at X — 2.73 and similar nonuniformities were 
found to occur; however, for X—2.31 no evidence of 
domain formation has been found. In previous investiga- 
tions at low Ri, Kalliroscope flakes have been shown to 
induce a nonuniform Taylor-vortex pattern with large 
vortices consistently at the top of the system.10 The 
vortex-size irregularities in our experiments cannot be 
due to this effect since the largest vortex pairs occur at 
various locations along the cylinders during different 
runs. Our results were also independent of the visualant 
concentration. Finally, attempts were made to obtain 
data with a free upper surface, but the vortex at the 
upper surface was found to be unstable to splitting. 

We know of no other closed system with behavior 
directly comparable to that reported here, but several 
systems do exhibit nonuniformities. The Eckhaus insta- 
bility in an electrohydrodynamic system" leads to modu- 
lation of the roll pattern, but this is a transient effect. 
Intermediate-aspect-ratio Benard convection has been 
found to occur with nonchaotic localized modes of oscil- 
lation.12 There are instances in the circular Couette sys- 
tem in which the vortex structure is disrupted by the 
presence of turbators or dislocations near instabilities in 
which the number of vortices changes.13   Vortex-size 
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variations have been reported near stability boundaries 
at low Rj when the outer cylinder is at rest,2"4 but these 
arc smooth variations in size (over distances comparable 
with the cylinder length2), with the central vortices 
larger than those near either end. At higher Reynolds 
numbers the onset of noisy small-scale structure occurs 
in the larger vortices near the center of the system4 and 
spreads throughout the system as /?, increases. In con- 
trast to these cases our system exhibits persistent, sharp- 
ly defined coexisting domains of distinct dynamical be- 
havior occurring over a large parameter range, and the 
secondary flows are correlated with abrupt wavelength 
variations in the primary-flow structure. 

The origin of the domain states is only partially under- 
stood. In an ideal infinite system one might expect the 
vortices to be uniform,14 althougth the preferred size 
might vary with Rt and R0. In a finite system away 
from its preferred X some vortex pairs may adjust their 
sizes at the expense of others. For the special case 
R0 "0 this is observed to lead to changes in N, but for 
Ro^0, N may not change and domains can form. It 
should be possible to study this by numerical examina- 
tion of the stability of a vortex pair14 with variable k. A 
different approach is to construct model systems of cou- 
pled oscillators or ID maps.15"17 Such modes exhibit 
nonuniformities, and indeed Keeler and Farmer17 have 
found coexisting chaotic and laminar domains as their 
system is forced away from its preferred wavelength. 
However, in contrast with our experiment, their model 
also predicts that in time the character of the individual 
domains will alternate between laminar and chaotic, and 
that there will be time intervals in which the entire sys- 
tem is laminar. While such a model has certain similari- 
ties to our experiments, it should only be taken as a 
starting point for the construction of models that more 
closely correspond to the actual flow. 

In summary, we have found flow states in a finite- 
length circular Couette system in which dynamical 
domain formation occurs and very different levels of 
chaotic behavior coexist. The formation of the domains 
is governed by abrupt variations in the local axial wave- 
length of the Taylor vortices. We have argued that these 
effects may be related to the finite size of the system, but 

if so they are strikingly different from finite-size effects 
found in other nonequilibrium systems, including the 
Couette system with the outer cylinder at rest. 
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Phase modulation of Taylor vortex flow 
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The phase dynamics of Taylor vortex flow close to onset was studied by applying a forced 
modulation to the upper boundary of a large-aspect-ratio concentric-cylinder system. Our experi- 
mental results show that the phase disturbances progress diffusively along the Taylor vortices in 
the axial direction. Values of the diffusion coefficients obtained experimentally are compared with 
those found in numerical computations. We also confirm the dependence of the diffusion 
coefficient on the wave vector of the Taylor vortices predicted by the general theoretical model of 
Pomeau and Manneville [J. Phys. (Paris) Lett. 40, L609 (1979)]. 

In the last decade, much attention has been given to the 
phase dynamics of patterns in hydrodynamic systems 
where the transition from a uniform state to a spatially 
periodic state occurs.1-5 One of the classic examples is 
the Taylor-Couette system, which consists of fluid be- 
tween two concentric cylinders with the inner one rotat- 
ing. When the rotation frequency of the inner cylinder 
exceeds a threshold value, the spatially uniform circular 
Couctte flow (CCF) changes to the axially periodic Tay- 
lor vortex flow (TVF). The flow pattern undergoes suc- 
cessive transitions as the inner cylinder rotation frequency 
increases further, leading eventually to turbulent flow. 
The characteristics of the flows in the Taylor-Couette sys- 
tem have been investigated extensively by visualizing the 
patterns and measuring the velocity profiles.6 While the 
Navier-Stokes equation, in principle, provides a theoreti- 
cal basis for understanding the experimental results,7,8 the 
complexity of the equation often makes it difficult to com- 
pare with real laboratory situations, therefore necessitat- 
ing the use of model equations. In particular, dynamics of 
patterns may be well reproduced with simplified model 
equations such as the Ginzburg-Landau equation.9 In 
this spirit, it has been shown that phase variables (which 
might be associated with, for instance, the positions of 
rolls in the Taylor-Couette system) are governed by a sim- 
ple diffusion equation' in the nonequilibrium systems that 
show spatially periodic structures after a supercritical bi- 
furcation. This provides us with a very simple and direct 
way to study the slow, long-wavelength dynamics of Tay- 
lor vortices with theoretical understanding. 

We have performed a detailed experimental study of 
the phase dynamics near the onset of TVF in a large- 
aspect-ratio concentric-cylinders system. The phase-dif- 
fusion coefficients were obtained by studying the responses 
of the Taylor vortices to the motion in the axial direction 
of the top boundary of the system. Two different bound- 
ary conditions were implemented in our experiments. In 
the first case the top boundary oscillated in the axial 
direction, while in the second case it was moved at a con- 
stant speed to a final position. In both cases the pattern 
disturbances traveled diffusively away from the boundary 
in the axial direction. The diffusion coefficients we ob- 
tained are consistent with the results of numerical compu- 
tations l0" based on the Navier-Stokes equation. We also 
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present experimental results on the dependence of the 
phase-diffusion coefficient on the wave vector of the Tay- 
lor vortices. We found that the diffusion coefficient de- 
creased as the wave vector of the TVF deviated from qc, 
the critical wave vector for TVF.I2 These results are con- 
sistent with the phase-diffusion model.' 

The control parameter for the Taylor-Couette system 
with the outer cylinder at rest is the Taylor number T. It 
is defined as 7"",(n,r,rf/v)(<///v)l/2, where n, is the inner 
cylinder rotation frequency, /■, is the inner cylinder radius, 
d is the gap between the inner and outer cylinders, and v 
is the kinematic viscosity. When T exceeds the threshold 
7V, the flow changes from a uniform CCF to a periodic 
TVF. In the vicinity of Tc, the lowest order of, for exam- 
ple, the radial velocity field has the form u(r,zj) 
—A(z,t)e'q''u(r), where u(r) is the eigenfunction, z is 
the axial position, and qc is the critical wave vector corre- 
sponding to the lowest Tc.

n The amplitude A(zj) can 
then be rewritten as |/l(r,/)k'*(r'), where <p(z,t) is the 
phase variable associated with the slow space and time 
variations in A. 0 has been predicted3 to obey a diffusion 
equation 

3/   "''I,' 
where 

D»- 
ti (*-3£öV) 

(i) 

(2) 
ro (e-tfq2) ' 

and ro is the perturbation amplitude growth rate, £n is the 
correlation length, e-(T-Tc)/Tc is the distance to the 
onset of TVF, q —q —q(, q is the wave vector of the TVF. 

Our experiment is conducted in concentric cylinders 
with the outer one fixed. The inner cylinder radius r, 
— 5.262 cm, the outer cylinder radius r0—5.965 cm, the 
length between collars initially is 49.5 cm, and therefore 
the radius ratio n—0.882 and the aspect ratio Y"Ll 
(rn —r,)-70.4. The inner cylinder is driven by a Com- 
pumotor stepper motor. The working fluid is a solution of 
double distilled water and 44% glycerol by weight. 1% by 
volume of Kalliroscope AQ1000 is added for visualization. 
The forced modulation is added through moving the top 
collar of the system [see Fig. 1(a)]. A stepper motor can 
move the collar a maximum distance of 1 cm. The visual- 
ized TVF pattern is viewed with a 512x480 pixel CCD 
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upper collar 
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FIG  1.  (a) Schematic diagram of the experimental geometry,  (b) Node line locations of TVF subjected to the periodic boundary 
modulation, i represents time and z is the distance from the top collar. The solid line traces the shift in phase from vortex to vortex. 

camera which is connected to an image processor. The 
light intensity of a vertical line of the pattern is recorded 
and the positions of the node lines are determined by 
finding minima of the light intensity profile. For a typical 
situation we have a resolution of 34 pixels per vortex. 

In the first type of experiment, the top collar oscillated 
in the axial direction. We found that the phase at z -0 
exactly follows the top collar's motion due to the fact that 
the period of the modulation T^>d2/v, the diffusion time 
through a vortex. (Typically, 7"-3040 s and d2/v\2.3 
s.) This provided the following boundary condition 

01 •<t>os\n(o)t). (3) 

Here 0O and a> are the modulation amplitude and frequen- 
cy. Solving Eq. (1) with the above boundary condition, 
we obtain 

<p(z, t)— <t>oe 

a-ß 
a 

2D„ 

sin(<ur — ßz), 
1/2 

(4) 

(5) 

Assuming z„ is the location of the nth vortex node line, 
then 0(z„,t )+qz„ -««, therefore 

zn-[nn-4>ve ~"s\n(o>t -ßz)]/q 

=z„°-0oe ~""sin(<ot -ßz°Vq , (6) 

where z° is the location of the vortex node line without 
modulation and zS—nx/q. Equation (6) shows that the 
node lines oscillate sinusoidally, their amplitudes decrease 
along the axial direction, and a phase shift occurs between 
the neighboring node line motions. 

In the second experiment, we moved the top collar to a 
final position at a constant speed, which leads to the ap- 
proximate boundary condition 

0|r-o-0ottO)- (7) 

Here Hit) is the step function, 0 for / < 0, 1 for r > 0. It 
deviates from the real boundary condition owing to the 
finite time (typically 48 s) for the collar to reach its final 
position, but our analysis showed that this deviation is 
negligible in the region far from the boundary (three or 

5 10 15 20 » 0 5 10 15 20 

Z   (cm) Z   (cm) 
FIG. 2.  Dots represent the experimental data and the solid lines are derived from the fit to the diffusion model, (a) a is the ampli- 

tude of each node line motion, (b) S is the phase shift of the node line motion. 
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FIG. 3. Relation between D« and the square of the wave vector, q2, for:  (a) the periodic modulation case;   b) the uep-furc ion 
modulation case. Dots represent the experimental data and the solid lines are the fits to Eq. (2). 

more vortices away from the collar). Substituting the 
above boundary condition in Eq. (1) and following the 
same procedure as described for the periodic modulation, 
we find that the location of the nth vortex node line is 
given by 

,o_ 

a.,0- 

docdc 
2(D,t),n 

^"-rfoerfc 
2{D,tVn (8) 

where do is the distance that the top collar moves and erfc 
is the error function complement. 

In the periodic modulation case, the sinusoidal motion 
of the upper collar has a typical amplitude of do/d "0.480 
and a period of 3040 s. For each set of data, the inner 
cylinder rotation frequency is adjusted to the TVF region 
and left about 1 h (our measurements showed that it took 
about 30 min for our system to reach a steady state). Two 
hours after starting the modulation, we began recording a 
vertical line image of the flow pattern every 2 min for 5 h. 
Figure 1 (b) is a typical data set. The response of each 
node line is a sinusoidal function of time, with an ampli- 
tude and phase shift as predicted by Eq. (6). By fitting 
this data set with the following equation 

z„ —z„ — asinimt — 8), (9) 

line motion, we found that lna and S were linearly related 
to z„ as shown in Fig. 2(a) and 2(b) The slopes of the 
lines give us values of a and ß from EQ (6), and hence the 
value of Dt. The variations of a and ß were within 20%. 
The resultant value of £>» was found to be independent of 
the modulation period. Repeating the experiment with a 
different Taylor vortex wave vector we found that Dt de- 
creased when the wave vector q deviated from qc. Figure 
3(a) shows a typical dependence of Df on q. The correla- 
tion length £o and correlation time To can be obtained by 
fitting this with Eq. (2). The values for this case are listed 
in Table I. 

In the step function case, the upper collar moves at a 
constant speed (about 0.125 mm/s) to a final position in 
48 s, which leads to an aspect ratio increase of 0.853. The 
response time of each vortex increased with distance of 
the vortex from the top boundary. For instance, the relax- 
ation time for the 2nd vortex boundary to reach halfway 
to its steady-state position is 31.1 s after the collar comes 
to rest, while that of the 3rd vortex boundary is 71.9 s. In 
this case, the approximation of Eq. (7) is valid for the vor- 
tices beyond the three adjacent to the collar. The same 
data acquisition technique is used here. The light intensi- 
ty profile of a vertical line is recorded every 12 s after the 
modulation is added. A typical data set took 40 min. Fig- 
ure 4 shows a sample result. Fitting this data with the 
equation 

f 
s„ ,°_ 

where a and 8 are the amplitude and the phase of the node 
rfocrfc 

VF 
:io) 

TABLE I. Values of Dt from our experiments, for q "3.25 and n —0.882; calculated values of £o and 
r0 for n -0.90 from Ref. 10; and D, for q - 3.30 and n -0.85 from Ref. 11. 

D, «0 1/ro e Source of data 

l.63±0.12 0.260 24.3 0.0740 periodic modulation 
1.59 ±0.07 0.293 18.9 0.0740 periodic modulation 
1.54 ±0.20 0.288 19.3 0.0621 constant modulation 
1.58 ±0.17 0.301 17.4 0.0829 constant modulation 

0.382 13.109 Ref. 10 
1.70 0.070 Ref. 11 
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FIG 4. Node line locations of TVF subjected to the step- 
function boundary modulation. Modulation is added at r-0 
[t-t/(d2/v)]. Dots represent the experimental data and solid 
lines are the error function fits to the data. 

where s„ -z°/2(Z>«)l/2 according to Eq. (8), we obtain s„ 
as a linear function of z°. Therefore, D, is evaluated by 
the slope of s„ and z„°. Repeating this process for different 
TVF wave vectors, we obtained a relation between Dm and 
wave vector similar to that found in the case of periodic 
modulation. The results are shown in Fig. 3(b). The 
resultant values of £o and TO are shown in Table I in com- 
parison with those from the periodic cases and numerical 
computations.I0" Our values of 4o and ro differ from the 

numerical values of Ref. 10, while D, from Ref. 11 is 
within our error bars for three cases. In both numerical 
cases, the geometry studied was similar to ours. That we 
differ with Ref. 10 suggests we may be operating some- 
what beyond the range of applicability of Eq. (2), which 
is, strictly, only appropriate for e — 0. Further experi- 
ments with f smaller than 0.06 would be needed to verify 
this. 

As shown in Fig. 3(a) and 3(b), the range of wave vec- 
tors accessible to us is limited due to the large radius ratio 
of our system. According to the Eckhaus theory,12 there 
are larger stable wave-vector regions of TVF in a small 
radius ratio system, since it is possible to go to higher e 
before reaching a wavy instability. Therefore, it is expect- 
ed that an experiment in a small radius ratio system will 
show a more profound dependence of Di upon the wave 
vector. 

In summary, our experimental results have confirmed 
the basic features of the phase diffusion model proposed 
by Pomeau and Manneville1 near the onset of TVF. We 
studied the phase-diffusion process under two distinct 
types of modulation and obtained consistent results. In 
both cases, the phase variables diffused along the Taylor 
vortices in the axial direction. The measured diffusion 
coefficients decreased when the Taylor vortex wave vector 
deviated from qc. 

We express our special thanks to Innocent Mutabazi for 
many useful discussions. We also thank Doug Dolfinger 
for developing the modulation apparatus. This work was 
supported by the Office of Naval Research, under Con- 
tract No. N00014-86-K-0071 and Grant No. N00014- 
89-J-1352. 

'Y. Pomeau and P. Manneville, J. Phys. (Paris) Lett. 40, L609 
(1979). 

2J. E. Wesfreid and V. Croquette, Phys. Rev. Lett. 45, 634 
(1980). 

3P. Tabeling, J. Phys. Lett. 44, 665 (1983). 
4H. Brand and M. C. Cross, Phys. Rev. A 27, 1237 (1983). 
5M. Lucke and D. Roth, Z. Phys. B 78, 147 (1990). 
6H. L. Swinney and R. DiPrima, in Hydrodynamic Instabilities 

and the Transition to Turbulence. 2nd ed., edited by H. L. 
Swinney and G. P. Gollub (Springer, Berlin, 1985), p. 139. 

7P. S. Marcus, J. Fluid Mech. 146, 45 (1984). 

8P. S. Marcus, J. Fluid Mech. 146, 65 (1984). 
9A. C. Newell, J. A. Whitehead, J. Fluid Mech. 3«, 279 (1969). 

For application to the Taylor-Couette system see R. Graham 
and J. A. Domaradzki, Phys. Rev. A 26, 1572 (1982), and 
references therein. 

I0M. A. Dominguez-Lerma, G. Ahlers, and D. S. Cannell, Phys. 
Fluids 27, 856 (1984). 

"H. Riecke (private communication); see also a related paper, 
H.-G. Paap and H. Riecke (unpublished). 

I2G. Ahlers, D. S. Cannell, and M. A. Dominguez-Lerma, Phy- 
sica23D, 202(1986). 

A-8 



VOLUME 67, NUMBER 10 PHYSICAL  REVIEW   LETTERS 2 SEPTEMBER 1991 

Phase Dynamics of Wavy Vortex Flow 

Mingming Wu and C. David Andereck 
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(Received 17 April 1991) 

The phase dynamics of wavy vortex flow is studied by applying a forced modulation to the upper 
boundary of a large-aspect-ratio concentric cylinders system. The experimental results are consistent 
with a model based on coupled phase equations. We find that the perturbations propagate as traveling 
waves parallel with the axis of the system when there is a strong coupling between the axial and azi- 
muthal phase variables, and diffusively for weak coupling. The propagating wave speed is measured for 
a range of Reynolds numbers. 

PACS numbers: 47.20-k, 47.30.+s 

Considerable attention has been given to patterns 
formed in such nonequilibrium systems as Rayleigh- 
Benard convection and Taylor-Couette flow. These stud- 
ies have typically been concerned with the properties of 
these patterns under steady-state conditions, e.g., wave- 
lengths, wave speeds, and space-time variations. Much 
less is known about the responses of such patterns to 
external perturbations [1-7]. The importance of this 
may be seen by a simple analogy with solids: It is possi- 
ble to determine their crystallographic characteristics 
alone, but the elastic properties revealed by detailed pho- 
non studies are essential for a complete understanding of 
the structure and its underlying atom-atom interactions. 
In this Letter we present the results of an experimental 
investigation of the response to perturbations of a partic- 
ular nonequilibrium pattern which arises in the Taylor- 
Couette system. The slow perturbations give rise to 
long-wavelength excitations, either diffusive or propa- 
gating, which will be discussed within the framework of 
the phase dynamics theory of Brand and Cross [4l. 

The Taylor-Couette system [8] consists of fluid be- 
tween two concentric cylinders with the inner one rotat- 
ing. The flow pattern undergoes successive transitions as 
the cylinder's angular velocity ft increases. When the 
Reynolds number R (« n) exceeds a threshold value 
Rc, the spatially uniform circular Couette flow changes to 
the axially periodic Taylor vortex flow (TVF). The first 
time-dependent regime, wavy vortex flow (WVF), in 
which an azimuthal wave is superimposed on the TVF, 
occurs for slightly greater R in a large-radius-ratio sys- 
tem. The phase dynamics in the Taylor vortex case (i.e., 
one phase variable) is now well established. The behavior 
can be described by a simple diffusion model [1-3,5,6]. 
The experiments reported here concern wavy vortex flow, 
which is described by two phase variables: One variable, 
V, is related to the axial position variations of the vortices 
and the other, 0, to the azimuthal wave phase. Brand 
and Cross [4] proposed that the dynamics in this case is 
governed by coupled diffusion equations with the coupling 
strength proportional to the azimuthal wave vector. They 
predict richer dynamics than for the Taylor vortex case, 
but experimental support for this picture has been lacking 
until now. 

To study the phase dynamics of wavy vortex flow, we 
impose a periodic modulation at one end of the cylinders 
and the responses of the vortices art recorded. The varia- 
tions of y diffuse along the cylinders for small vortex size, 
small azimuthal wave number m, and small azimuthal 
wave amplitude, and propagate otherwise. We show that 
the diffusion coefficient for y increases with decreasing 
vortex size, while the coupling between neighboring vor- 
tices increases with increasing azimuthal wave vector and 
wave amplitude. The values of the traveling wave speed 
are found to increase with the rotation frequency of the 
cylinder. 

The control parameter of our system is the Reynolds 
number Ä —ftr,<//v, where r, (""5.262 cm) is the inner- 
cylinder radius, d (—0.703 cm) is the gap between the 
inner and outer cylinders, and v is the kinematic viscosi- 
ty. We scale lengths by d and time by d2/v (12 sec). 
The average aspect ratio r—Z.A/—70.4, where L is the 
length of the cylinder. The working fluid is bounded by 
two Teflon rings. The lower ring is tightly fitted to the 
outer cylinder, while there is a 0.8-mm gap between the 
top ring and both the inner and outer cylinders. The 
upper ring is supported by the traversing mechanism re- 
sponsible for driving the axial oscillation of the ring. This 
mechanism is driven by a stepper motor under computer 
control [5,9]. 1% by volume of Kalliroscope AQ1000 is 
added to the fluid for visualization. The visualized flow 
pattern is viewed with a 512x480 pixel charge-coupled- 
device camera which is connected to an image processor. 
The light intensity of a vertical line of the pattern is 
recorded and the positions of the vortex boundary lines 
are determined by finding minima of the light intensity 
profile. The vortex boundary line positions change on two 
time scales, the slow time T\ (corresponding to the slow 
top boundary oscillation, which has a typical period of 
several minutes) and the fast time Ti (corresponding to 
the azimuthal wave motion of period — 1 sec). We define 
z„(T\) to be the average boundary line position change of 
the /ith vortex due to the slow top boundary modulation. 
Thus, y—qzn(T\), where q is the axial wave vector. To 
obtain I„(T\), we take about 100 consecutive line profiles 
(covering about 10 azimuthal waves) in 7 sec, find the in- 
tensity minima, and then average out the azimuthal wave 
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motion.  For a typical situation we have a resolution of 30 
pixels per vortex. 

We first measured zn(T\) at f =0.140 (f(/?-/?<•)/ 
/?<•], slightly above the onset of WVF, where the azi- 
muthal wave number m — 3. A typical result is shown in 
Fig. 1(a). The amplitude of z„(T\) decreases exponen- 
tially along the system axis [Fig. 2(a)], which is indica- 
tive of diffusion, and there is a linear phase shift between 
oscillations of neighboring vortices [Fig. 2(b)]. Upon 
further increasing the  rotation  frequency,  the system 

reaches a new stable state with m=7 at 6=0.813. For 
modulation period 7-53.3, z„(T{) reveals an axially 
propagating wave in the middle section of the cylinders, 
as shown in Fig. 1 (b). The complete amplitude of z„(T\) 
versus axial position is shown as the a data symbols in 
Fig. 2(a). Diffusive behavior is observed in the vortices 
near the top collar of the cylinders (0 < z < 10). These 
end vortices have a small azimuthal wave amplitude, evi- 
dently leading to a relatively weaker coupling between 
the axial and azimuthal phase variables than in the bulk. 

200 

FIG. I. Responses of the axial phase variable J„(7"i) to a 
modulation of period T-53.3. Number of vortices /V-60. (a) 
m-3, e -0.140; (b) m-7, e-0.813. The straight line traces 
the shift in phase from vortex to vortex. 

A-10 

0.4 

0.3 

d  0.2 

0.1 

0.0 

\ 

33 oo=C3==i= N 
QZ        N. 

- 

'-   X 
Q"    „ 

5 

;      \ 

.i 
V*« 

. 1—.—.— 

10 20 30 40 50 

-1 

-2 

(b) 

10 20 30 

FIG. 2. (a) Amplitude and (b) phase shift S of f„(7",) vs ax- 
ial position. The bar represents the largest error of all the data 
points, x: m-3, AT-60, <f-0.140, 7-53.3; D: m-7. .V-60, 
f-0.813, T-53.3; •: m-7. .V-60, 6—0.813, T-^OT The 
solid lines are fits to the data, either linear or exponential. 
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A second contributing factor is that vortices near the col- 
lar are ~3% smaller than in the middle region. The 
diffusive behavior near the collar is consistent with the 
observation, discussed below, that the diffusion coefficient 
is larger for smaller vortices. In our experiment the axial 
range of the constant-amplitude propagation region 
varied with modulation period, e, and vortex size: Faster 
modulation, larger e, and larger vortex size lead to a 
longer constant-amplitude region. The phase shift S of 
neighboring z„(T\) in this region has a linear dependence 
on the axial position [D line of Fig. 2(b)]. The falloff of 
the zn(T\) amplitude in the lower end of the cylinders 
[z > 30 in Fig. 2(a)] is evidently a finite-length effect. 
The phase shift in this region is a linear function of the 
axial position with a slope close to that of the phase shift 
line for the traveling wave in the middle of the system. 

For r-207 [• line of Fig. 2(a)], the amplitude of 
z„(T\) is linearly related to the axial position. Its slope, 
scaled by the oscillation amplitude of the upper ring, is 
0.0! 37= 1/r. This is a typical solution of a propagating 
wave equation where the wavelength is much longer than 
the length of the system. The corresponding phase shift 
between neighboring zn(T\) [• line of Fig. 2(b)] is zero, 
which means that the modulation is slow enough for each 
vortex to respond simultaneously. 

The vortex-size dependence of the phase dynamics was 
explored in some detail. Figure 3 shows the amplitude of 
z„(T\) along the axis for the same ( and m, but different 
vortex size. The amplitude decreases more rapidly in the 
JV-60 state than in the yV-54 state, indicating the 
diffusion coefficient is larger for small vortices.  Similar 
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FIG. 3. Amplitude a of z„(T\) vs axial position for different 
vortex sizes. The bar represents the largest error of all the data 
points. T -28, ( -0.813, m -7, and N as indicated. The solid 
lines are exponential fits to the data. 

behavior is found in Taylor vortex flow [5]. 
The slope of S(z) gives the traveling wave vector K, 

and in turn the value of the traveling wave speed c. In 
Fig. 2(b), we obtained c—7 (or 0.4 cm/sec), which shows 
this is a very soft system compared with sound propaga- 
tion in liquids or solids. The computed wavelength is 
about 365. 

We have measured the traveling wave velocity c in the 
middle section of the cylinders as a function of ( in the 
strong-coupling regime (see Fig. 4). c is shown below to 
be proportional to the coupling strength. For a wavy 
state with fixed m and N, the increase of e corresponds 
(roughly) to increasing azimuthal wave amplitude. Thus 
the increase of c with e (see Fig. 4) implies that the cou- 
pling strength increases with the azimuthal wave ampli- 
tude, c can also be evaluated from the amplitude equa- 
tion [4] close to the onset of TVF. However, the calculat- 
ed value shows only a very small dependence on f, chang- 
ing from 0.63 to 0.65 for a variation of f from 0.5 to 1.5. 
This difference is not unreasonable as the amplitude 
equation approach is useful only close to the onset of 
TVF. Further theoretical work is necessary to explain 
the dependence of c on e. 

We can understand many of our observations within 
the theoretical framework of the coupled linearized phase 
equations [4l. Based on symmetry arguments and con- 
sideration of sufficiently slow variations in space and 
time. Brand and Cross proposed that the dynamics of the 
phase variables y and $ of the wavy vortex flow is 
governed by the following equations: 

(l) 

FIG. 4. Values of traveling wave speed c vs f for m—8, 
N— 54, and 7"—20. The bar represents the largest error of all 
the data points. The solid line is drawn to guide the eye. 
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where D\ and Di are the diffusion coefficients for the axi- 
al and azimuthal directions, C\,C2ccq>, and z is along 
the axis. D\,Di,C\,Ci can be evaluated by the amplitude 
equation near the onset of TVF [4j. From this equation, 
we expect that for a Taylor vortex state (qy ~0, C\ 
~C2~0) or for a small-?, wavy vortex state (leading to 
small C\,Ci), y can be described by a diffusion equation, 
while for a large qy, y/ is governed by a propagating wave 
equation: 

£x.-c2£x. 
dr bz' 

■0. (2) 

Here c-(C,C2)
l/2. 

The phase at z -0 exactly followed the collar's oscilla- 
tory motion since the modulation period is much larger 
than d2/v, the diffusion time through a vortex (typically, 
7"ss53). Therefore we have the following boundary con- 
dition: 

ip|-_0 — y0sin(<ot) (3) 

where yo and a>"" 2n/T are the modulation amplitude and 
frequency. To compare with our experiment, Eq. (1) is 
solved with the above boundary equation in two distinct 
regimes. The first is the weak-coupling regime where 
C\CI<£.Q)\D\ —DI\. The solution has the form 

v(r,/)~^oe   a:smiioi — az), 

a-W2Z>,),/2. 

(4) 

(5) 

This behavior was observed in Taylor vortex flow 15), 
where C|,C2~0, and in small-m wavy vortex flow (for 
example, m—3; see the x lines of Figs. 2(a) and 2(b)). 
Using Eqs. (4) and (5), the slope of the line in Fig. 2(b) 
gives D|3l.4. By comparison, for Taylor vortex flow [5] 
we found values of D ranging from 1.6 to 1.1, depending 
on the axial wave vector. 

The   second   is   the   strong-coupling   regime   where 

C|CI»2ü>(£)|+ £>:). The solution then has the form 

v(r,/)~V'osin(ü>/— Kz), (6) 

where K—co/c. This corresponds to the large-m wavy 
state (m— 7, 8, or 9) where strong coupling exists. A 
typical example is shown in Figs. 2(a) and 2(b). We 
were not able to study the phase dynamics of the m —4, 
5, and 6 states due to difficulties with analysis of their 
very large amplitude waves. For these intermediate-m 
states we might expect an overdamped mode [4]. 

To summarize, we have studied the phase dynamics of 
wavy vortex flow and observed both diffusive and propa- 
gating modes. These results are consistent with the 
coupled-phase-equation picture of Brand and Cross [4l. 
The measured traveling wave speed and its strong depen- 
dence on the Reynolds number remains a challenge for 
the theory. 

We thank H. Brand for carefully reading the 
manuscript and Z. H. Wang, F. Hayot, and I. Mutabazi 
for helpful discussions. This work was supported by the 
Office of Naval Research, under Contract No. N00014- 
86-K-0071 and Grant No. N0OO14-89-J-I352. 
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Abstract. - We study the phase dynamics of turbulent Taylor vortex flow by applying a forced 
modulation to the upper boundary of a large-aspect-ratio system of concentric cylinders. The 
experiment shows that the axial phase variable of the turbulent Taylor vortex flow is a 
deterministic variable and its dynamics can be described by a simple diffusion model. The 
resultant diffusion coefficient of the turbulent Taylor vortex flow is about an order of magnitude 
larger than that of laminar/regular Taylor vortex flow. We argue that the approach of phase 
dynamics can also be applied to turbulent flows as long as there is, on sufficiently long-time 
scales, a coherent structure discernable in the system. 

The concept of phase dynamics, the analogue of hydrodynamics for large-aspect-ratio 
pattern forming nonequilibrium systems, which is concerned with the long-wavelength, 
low-frequency modulations of patterns, has turned out to be the most suitable macroscopic 
approach for spatially periodic patterns far above onset of an instability over the last few 
years [1]. Phase dynamics has been studied in particular for one-dimensional [2-9] as well as 
for two-dimensional nonequilibrium systems [4,10]. In both cases, phase dynamics gives rise 
to simple model equations, making it possible to compare theoretical and experimental 
results directly. In this paper, we present an experimental study of phase dynamics in a 
turbulent flow, where nevertheless long-range spatial coherence exists. A diffusion model is 
proposed to explain the experimental results obtained. In addition we discuss for which other 
flows showing locally turbulent, irregular or rapidly oscillating behavior the concept of phase 
dynamics could be used. 

The Taylor-Couette system investigated experimentally consists of two rotating 
concentric cylinders with fluid confined in between. The control parameter of the system is 
the Reynolds number R s Qrxd/v, where Q is the rotation rate of the inner cylinder (for fixed 
outer cylinder), r{ is the radius of the inner cylinder, d is the gap between the cylinders, and v 
is the kinematic viscosity of the fluid. The fluid displays various spatially periodic structures 
as R increases. The succession of flow pattern instabilities with increasing R is: uniform 
circular Couette flow, axially periodic Taylor vortex flow (TVF), wavy vortex flow, 
modulated wavy vortex flow, weakly turbulent flow, and turbulent Taylor vortex flow 
(TTVF)[11]. 

The phase dynamics for the Taylor-Couette system describes the slow temporal and 
spatial changes of the wavelength in the axial and the azimuthal direction. The phase 
dynamics of a one-phase variable case, the Taylor vortex flow, has been studied extensively 
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Fig. 1. - Space-time diagram of a turbulent Taylor vortex flow with € = 19.7, Np = 27, a) before and 
b) after averaging. We note the different scale on the abscissa in a) and b). The total time interval plot- 
ted in 6) is about 500 times (i.e. nearly three orders of magnitude) as long as that plotted in a). 

and found to be well described by a simple diffusion equation [2,4-9]. A more recent 
experimental study of phase dynamics for a two-phase variable case, the wavy vortex 
flow [10], shows that it is described by coupled diffusion equations, as proposed by Brand and 
Cross [4]. In this manuscript, we present experimental work on phase dynamics in turbulent 
vortex flow and suggest a model to describe the results. A sinusoidal forcing is added to the 
top collar of the Taylor-Couette system. The perturbations to the wavelength of the first 
vortex diffuse along the cylindrical axis and the resultant diffusion coefficient is found to be 
more than an order of magnitude larger than that of regular Taylor vortex flow. 

Our experiment is conducted for two concentric cylinders with the outer one fixed. The 
radius of the inner cylinder is rj = 5.262 cm and that of the outer cylinder r0 = 5.965 cm. The 
inner-cylinder rotation frequency is controlled by a Compumotor stepper motor (model 
M83-93) which is precise to 0.001 Hz. The motor is interfaced through a Compumotor indexer 
to a PDP-11/73 computer. The working fluid region is bounded at both ends by Teflon rings. 
The lower-end ring is a tight fit with the outer cylinder and leaves a gap of 0.8 mm to the 
inner cylinder. The upper ring is controlled by a traversing mechanism [12] and it can 
oscillate along the axial direction over a maximum distance of 1 cm. The upper teflon ring has 
a gap of ~ 0.8 mm to both inner and outer cylinders. In this way, the fluid can move past the 
ring when the ring oscillates. The distance between the two teflon rings initially (before the 
modulation is added) is 49.5 cm, and therefore the average aspect ratio r = L/{r0 - r{) = 70.4. 
The working fluid is a solution of doubly distilled water and 44% glycerol by weight, which 
has a v = 4.0 cs. 1% by volume of Kalliroscope AQ1000 is added for visualization. All the 
numbers in this paper are dimensionless unless indicated otherwise. Lengths are scaled by 
the gap d(= r„ - r* = 0.703cm), and the time is scaled by d2/v, which is 12.3s in our 
system. 

The TTVF is obtained by increasing the inner-cylinder rotation rate to s = (R - Rc)/ 
/Rc ~ 20 for a state with number of vortex pairs .Vp = 27. It consists of highly turbulent flow 
on a small scale, while the wavy vortex boundaries persist. Waiden and Donnelly studied the 
time series of the vortex boundary in a similar state and found that its Fourier spectrum had 
a peak frequency (~ 1% larger than the cylinder rotation frequency Q) embedded in a noise 
band [13]. Thus, the position of a vortex boundary z„ (z), where z is just time scaled by d2 /v, 
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is a stochastic variable and the number of phase variables involved might be unclear at first 
sight. However, if we study the flow pattern further, we find that the axial phase variable 
(related to the average vortex boundary positions) is a deterministic variable. The space-time 
diagram of turbulent vortex boundaries is shown in fig. la). The vortex boundaries fluctuate 
on a time scale of 0.1 s. If we average the vortex boundary positions over longer times, e.g., 
of length of ~ 7 s (to average out the azimuthal wavy fluctuations), and record the average 
vortex boundary positions In(r) every 60s, I„(T) remains constant for at least three hours 
(see fig. 16)). This shows that the average vortex position is a deterministic variable even 
though the flow inside each vortex is turbulent. Under these specific experimental conditions 
we find that long-range spatial correlations exist in an e range of 19 -H 22 for an JVp = 26 state. 
The e range increases with the vortex size. It should, however, be possible to detect coherent 
vortices over a much larger range of £ [14]. 

Comparing fig. la) and b), we see that averaging over a time scale that is much shorter 
than all time scales of interest for the small-frequency behavior relevant for phase dynamics, 
a temporally averaged coherent pattern emerges. From inspection of fig. lb) we also see that 
this temporally averaged pattern shows a spatially well-defined coherent vortex flow with 
long-range spatial correlations. We note that the vortex wavelengths of the averaged pattern 
as well as the characteristic length scales for the spatial variations during modulations are 
much larger than the turbulent spatial fine structure observed within the turbulent Taylor 
vortices, thus satisfying the requirement of a clear-cut separation of length scales necessary 
for the phase dynamics approach. These requirements are described more fully following the 
discussion of our results. 

The experimental procedure is as follows. The cylinder rotation rate is carefully tuned 
until a steady TTVF is formed. The upper collar, controlled by a stepper motor, oscillates 
sinusoidally along the cylindrical axis. The amplitude of oscillation is about 0.5. Twenty 
minutes after the boundary modulation is added, the camera begins to take data. A light 
intensity profile of the flow pattern along a vertical line is grabbed and digitized by an image 
processor, and the vortex boundaries are located by finding the minima of the intensity 
profile. The vortex boundary positions change on two time scales, the fast time scale (~ 0.1 s) 
related to the azimuthal wavy fluctuations, and the slow time scale T related to the top 
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Fig. 2. - Responses of the axial phase variable z,(r) to a modulation of period T = 27.6. The turbulent 
wavy vortex flow is at e = 19.7, Np = 26. 

Fig. 3. - o) Amplitude a and b) phase shift 4 of in(r) vs. axial position for a modulation period of 
T = 27.6. □ Taylor vortex flow, e = 0.075, Np = 33; x turbulent Taylor vortex flow, E = 19.7, Np = 26. 
The solid lines are exponential (a)) and linear (b)) fits to the data. 
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boundary modulation (the period of modulation T = 27.6 in the experiment). As described 
above, the average vortex boundary position Z(T) is obtained by averaging out the fast 
azimuthal wavy fluctuations. z„ (r) is usually recorded once every 20 s for approximately half 
an hour, yielding 90 data segments, about 15 for each modulation period. 

A typical time series of Z„(T) is shown in fig. 2. The amplitude of Z„(T) drops off 
exponentially (see fig. 3a)) and the phase shift of the neighboring Z„(T) has a linear 
dependence on the axial position (see fig. 36)). This phenomenon is similar to the case of 
Taylor vortex flow [8], in which the phase dynamics is described by a diffusion model. 

Assume <p, directly proportional to Z„(T), is the averaged axial phase variable, then the 
simplest diffusion model gives 

where Dn is the diffusion coefficient, and z is along the system axis. The oscillation of the 
upper collar provides the boundary condition as 

!/'lz = o = ,/'osin(wT), (2) 

where ^0 
and w are the modulation amplitude and frequency. In the experiment we have used 

T = 27.6, that is w * 2x/T = 0Ü28. Solving eq. (1) with the above boundary condition, we 
obtain 

■//(z, r) = <p0 exp [ - <xz] sin (UT - ßz), (3) 

->-&■ 

This indicates that the amplitude of zn (T) drops off exponentially and the phase shift between 
neighboring z„ (T) is linearly related to the axial position z, which is in agreement with fig. 3a) 
and 6). From the slope of the line in fig. 36), the diffusion coefficient can be evaluated by 
eq. (4), which is about 25 in this case. The diffusion coefficients show no significant 
dependence on the modulation frequency for sufficiently small modulation frequencies. 

The amplitude and phase shift of z„ (T) of TTVF are plotted in comparison with the same 
quantities for TVF (fig. 3a), 36)). In fig. 3a), the amplitude drops off more rapidly for the 
TVF than that of the TTVF. In fig. 36) the phase shift of TVF has a steeper slope than that of 
TTVF. By applying the analysis described by eqs. (l)-(4) to the TVF data (see also [8]) we 
find that the diffusion coefficient for a TTVF is larger than TVF; the ratio is - 14 for our 
choice of parameters. The ratio would vary, of course, depending upon the values of e and 
axial wavelength. We note, however, that the variation of D as a function of e for our set of 
parameter values and the accessible e range of 19 < e < 22 for TTVF is negligible and within 
the experimental error for D (± 20%). The variation of D for TTVF has not been determined 
either experimentally or theoretically before (see ref. [5-9] for discussions of the variation of 
D for TVF). Therefore, our comparison is intended simply to represent the significant 
enhancement of D caused by the turbulent flow. The large phase diffusion coefficient of the 
TTVF can be attributed to the efficient momentum transport of the turbulent fluctuations of 
the TTVF [15]. A similar turbulence-enhanced phenomenon for kinetic coefficients has been 
observed for mass transport in turbulent Taylor-Couette flow at even higher Reynolds 
numbers [16]. The more efficient momentum transport appears to lead in both cases to a 
faster exchange of information about the concentration of a passive scalar (mass transport) 
and about the temporally averaged wavelength of the pattern (phase diffusion) and thus to 
larger effective transport coefficients in both cases. 

The results just described bring us naturally to the question of how generally the model of 
a one-dimensional phase diffusion equation is applicable to flows showing locally already 
turbulent behavior. Or to phrase the question even more generally: what has phase dynamics 

A-16 



M. wu et aL: THE PHASE DYNAMICS OF TURBULENT TAYLOR VORTEX FLOW 591 

to say about flow patterns that are locally turbulent, but which still have regular features in 
an averaged sense? And what are the necessary conditions concerning the time and length 
scales involved? As a first step we go back to systems close to thermodynamic equilibrium 
and recall the analysis leading to the derivation of hydrodynamic equations in such a system 
(see ref. [17]). For example, consider nematic liquid crystals. In those the positions of the 
constituents still show short-range order, whereas the molecules align on average 
spontaneously parallel to a certain direction characterized by a unit vector, the so-called 
director [18], and thus show broken orientational symmetry. The director is already a 
quantity which is averaged over many molecules in space and over many collision times 
temporally. That is, close to equilibrium the hydrodynamic equations one is writing down are 
already averaged over the shorter time and length scales. 

What we suggest here is to use the same approach for the TTVF state and similar states. 
That is, we consider equations for the average location of, e.g., the vortex boundary between 
neighboring vortices, assuming that the fluctuations in this location are fast compared to the 
time scales one is interested in. The phase entering eq. (1) is thus already a smoothed-out 
version of the actual phase. The same applies to the time 7 entering the time derivative and 
the coordinate z entering the spatial derivative. It is very important to keep in mind, 
however, under which conditions such a phase equation for a locally already turbulent 
pattern could make sense. Necessary ingredients for this to be the case include a clear-cut 
separation of length and time scales. That means, for example, well-defined vortices for the 
averaged pattern, which has been averaged over fairly short times. Also all time scales one is 
interested in must be long compared to the time scale over which one is averaging. Similarly, 
the length scales one can investigate must be large compared, e.g., to the vortex wavelength, 
as is already the usual case for phase dynamics. In addition the amplitude of the coherent 
pattern of interest should not vary strongly and/or abruptly, in particular zeros in the 
modulus of the amplitude would invariably lead to an immediate breakdown of the very 
concept of phase dynamics. The systems for which the averaging discussed here could make 
sense include, aside from the TTVF studied in this manuscript, turbulent spirals as they have 
been investigated by various groups [19-21]. In this case the occurrence of a propagating 
mode as predicted from phase dynamics for laminar spirals [22] can also be expected for the 
turbulent pattern. Furthermore, one must keep in mind the possibility of mean-flow effects, 
when one is applying phase dynamics to locally turbulent patterns, but this feature is similar 
to that already present for periodic flows. Another candidate for which the type of averaging 
procedure outlined could be applicable is slot convection in simple fluids. There one 
observes [23] well above onset that there are localized variations in the wavelength. 
Sometimes one finds, in addition, localized spatio-temporal oscillations of the interface 
between neighboring rolls. In case these oscillations, which are rather rapid, could be 
averaged out similarly to the rapid irregular waves discussed in this manuscript, one might 
again be able to use a phase equation for the description of this state. In this case this is an 
even more challenging question as the distribution of wavelengths requires a nonlinear phase 
equation,   which   bears   a   great   resemblance   to   spinodal   decomposition,   for   its 
description [24]. 

In conclusion, the phase dynamics of TTVF has been studied experimentally. A sinusoidal 
perturbation is added to the top collar of the apparatus in the TTVF state and the 
disturbances are found to diffuse along the axis of the system. A diffusion model is proposed 
for the phase dynamics in TTVF. The measured diffusion coefficient of TTVF is found to be 
~ 14 times larger than that of regular TVF for our particular choice of parameters. Finally 
we have critically discussed to what extent patterns showing locally turbulent, irregular or 
rapidly oscillating behavior could be amenable to a phase dynamics treatment in an average 
sense with respect to the variables. 

A-17 



iQ2 
EUROPHYSICS  LETTERS 

It will be most interesting to measure the variation of the phase diffusion coefficient D as a 
function of £ in the TTVF regime for a set of parameter values which allow for a large range 
of existence (in e) of turbulent Taylor vortices and to see a) whether there is a simple scaling 
law, D = er, and b) to find out whether the phase diffusion coefficient shows any singular 
behavior as the transition to featureless turbulence is approached. Another important issue 
for future research is the question of how the diffusion coefficient varies as a function of s for 
a scalar (such as the concentration investigated in ref. [16]) vs. that of a vectorial quantity 
(such as linear momentum or wave vector as investigated here). 

* * * 

We thank G. D. BAO, F. HAYOT and M. DUBOIS for many useful discussions. CDA thanks 
the Office of Naval Research for supporting the experimental work described here. HRB 
thanks the Deutsche Forschungsgemeinschaft for supporting his work. 
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INTRODUCTION 

In principle, the flows in the Taylor-Couette system can be understood as solutions 
of the Navier-Stokes equation [l, 2, 3]. Unfortunately the complexity of the equation 
often makes it difficult to compare with laboratory results, thus necessitating the use 
of model equations [4, 5, 6, 7]. A typical example is the successful use of amplitude 
equations [4] for the states close to the onset of the first supercritical bifurcations. 
The amplitude equation is derived from the basic equations by the expansion of a 
small amplitude of the structure. In the amplitude equation, the phase variable and 
amplitude are two independent variables. For a case where the wavelength has slow time 
and space variation, the amplitude is slaved to the phase variable and the amplitude 
equation can be simplified to a phase equation [5, 6, 7]. For a flow pattern that is far 
above its onset, the amplitude equations are no longer valid, but the equations for the 
phase variables still axe. 

In this paper, we give an overall summary of our experimental studies on phase 
dynamics in the Taylor-Couette system. Section 2 gives the experimental setup and 
the data acquisition technique. Section 3 contains the experimental results on the phase 
dynamics of Taylor vortex flow, wavy vortex flow and turbulent wavy vortex flow, along 
with their theoretical models. 

EXPERIMENTAL SETUP 

Our experiment is conducted in two concentric cylinders with the outer one fixed. 
The radius of the inner cylinder is r< = 5.262cm, the outer one r„ = 5.965cm. The 
cylinder rotation rate is controlled by a Compumotor stepper motor(model M83-93) 
which is precise to 0.001 Hz. A PDP-11/73 is interfaced through the Compumotor 
indexer to control the stepper motor. The working fluid region is bounded at both 
ends by Teflon rings. The upper ring touches neither the outer nor the inner cylinder, 
and is controlled by a traversing mechanism. The ring is able to oscillate along the 
axial direction over a maximum distance of 1cm under the control of a Compumotor 
stepper motor. The distance between the Teflon rings initially (before the modulation 
is added) is 49.5cm, and therefore the average aspect ratio T = ;-^- = 70.4. The 
working fluid is a solution of double distilled water and 44% glycerol by weight. 1% by 
volume of Kalliroscope AQ1000 is added for visualization. The flow pattern is viewed 
with a 512 x 480 pixel CCD camera which is connected to an image processor.   The 
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image data file can be saved in a micro-computer and later transferred to a VAX 8650 
for further analysis. 

EXPERIMENTAL AND THEORETICAL STUDIES OF THE PHASE DYNAMICS 
IN THE TAYLOR-COUETTE SYSTEM 

The controlling parameter of the Taylor Couette system is the Reynolds number 
(« ft, the inner cylinder rotation frequency). When R exceeds a threshold value R<y 

the spatially uniform circular Couette flow (CCF) changes to the axially periodic Taylor 
vortex flow(TVF). The first time-dependent regime, wavy vortex flow(WVF), in which 
an azimuthal wave is superimposed on the TVF, occurs for slightly greater R in a 
large radius ratio system. If R is increased further, the flow will pass the weakly 
turbulent region and reach the turbulent wavy vortex flow (TWVF). The azimuthal 
wavy boundary lines persist in the TWVF as in the case of WVF, but each vortex 
contains well developed turbulent flow [8]. 

The phase variables of interest are directly related to the positions of the vortex 
boundaries. For TVF, one phase variable i/>, the axial phase variable, is used to describe 
the position variations of the vortex boundary. For WVF, the azimuthal phase variable 
4> is introduced to describe the azimuthal wave motion. In the case of TWVF, it is 
not evident how many phase variables are involved. Our study only concerns the axial 
phase variable rjj, which relates to the average vortex boundary position in the axial 
direction. 

In order to study the phase dynamics of the flow patterns, a sinusoidal forcing is 
applied to the upper ring of the system. Responses of the vortex boundaries to the 
modulation are recorded by the computer. The following gives a detailed experimental 
and theoretical descriptions of the phase dynamics in the three flow regimes. 

Taylor Vortex Flow 

Assume z° and zn are the n"1 vortex boundary positions before and after the modu- 
lation is added. Then z° = =? and ij>(zn,t) = (z°-zn)q, where q is the axial wavevector. 
We adjust the cylinder rotation frequency until a stationary TVF pattern is formed. 
The flow pattern is set for 30 minutes before the upper ring oscillation begins. The 
image processor starts to take data 2 hours after the modulation is added. The vertical 
line profile of the flow pattern is taken every 2 minutes for 5 hours. The vortex bound- 
ary position Zn(z°,t) is obtained by locating the minima of the light intensity profile. 
Fig. 1 is a typical data set. The response of each node line is a sinuso:-:aJ function of 
time. The amplitude (in In scale) and the phase of the node line mc n are linearly 
related to the axial position (Fig. 2a , Fig. 2b). 

The above observations are understood by a simple diffusion model: 

at      "«9zj v ' 
where D\\ is the diffusion coefficient in the axial direction. 

We found that the phase at z = 0 exactly follows the top collar's motion due to the 
fact that the period of the modulation T > «f1/", the diffusion time through a vortex. 
(typically, T = 3040sec. and d?/v = 12.3sec.) This provides the following boundary 
condition: 

^>\t=o = r/>osin(ut) (2) 

Here ^o and u> are the modulation amplitude and frequency. Solving Eqn. 1 with the 
above boundary condition, we obtain: 

zn = z° - asin(u>t - S)/q (3) 
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Figure 1. Node line locations of TVF subjected to the periodic boundary modulation, 
t represents time and z is the distance from the top collar. The solid line traces the 
shift in phase from vortex to vortex. 

o.i - 

ln(a) 
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Figure 2. Circles are the experimental data and the solid lines are from the fit to the 
diffusion model, (a) a is the amplitude of each node line motion, (b) S is the phase 
shift of the node line motion. 
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where a = (ipo/q)e al», 6 = /3z°, a and 6 are the amplitude and the phase of the node 
line motion, and: 

""'^ w 
The fact that Ina and S are linearly related to z° is consistent with our experimental 

results shown in Fig. 2a and Fig. 2b. The slopes of the lines give us values of a and ß 
and hence the value of D\\ from Eqn. 4. The variations of a and 0 from our experiment 
were within 20%. A more detailed description of the phase dynamics in TVF can be 
found in Ref. [9]. 
Wavy Vortex Flow 

The phase dynamics of the wavy vortex flow is complicated by the introduction 
of the second phase variable <f>, thus leading to richer possibilities. Our experimental 
study has been limited to the dynamics of tj>. A somewhat different approach will be 
needed to study the dynamics, of <f> and further work on this matter is important for 
fully understanding the phase dynamics in WVF. 

In contrast with the Taylor vortex flow, the vortex boundary position in the lab 
frame zn(z,t) now changes on two time scales, the slow time T\ (corresponding to the 
slow boundary perturbation, which has a typical period of several minutes) and the fast 
time 7j (corresponding to the azimuthal wave motion of period ~ 1 sec). Averaging out 
the azimuthal wave motion, we have V» = g(in(Tj) — zjj), where z° is the average vortex 
boundary position without modulation. In order to obtain zn(Ti), we take about 100 
consecutive line profiles (covering about 10 azimuthal waves) in 7 sec, find the intensity 
minima along each vertical line, then average out the azimuthal wave motion for each 
node line. We repeat the above process at a time interval of 20 or 30 sec. depending 
on the modulation period T. In general, 10 data points are taken in a period T. 

z„(Ti) is measured for flow states with different m. A m=3 state is obtained by 
increasing e slightly above the onset of TVF, e = 0.140. A typical result is shown in 
Fig. 3a. The amplitude of zn{T\) decreases exponentially along the system axis, and 
there is a linear phase shift between oscillations of neighboring vortices. Upon further 
increasing the rotation frequency, the system reaches a new stable state with m = 7 
at e = 0.813. In order to obtain m = 7 with the same vortex number N, the rotation 
frequency is changed rapidly from e = 0.140 to e = 0.813. For the same modulation 
period T = 53.3, zn{Ti) reveals an axially propagating wave in the middle section of 
the cylinders, as shown in Fig. 3b. 

The above observations can be explained within the theoretical framework of the 
coupled phase equations proposed by Brand and Cross [7]. Based on their symmetry 
analysis, r/> and <f> are governed by: 

Tt    =   D"8*+CWz 

°i - >£**£ 
where z is along the axial direction, D^ and D± are the diffusion coefficients for the 
axial and azimuthal directions, C\\tC±. oc qy and represent the coupling between the 
azimuthal wave motion and the axial vortex position change. These coefficients can be 
derived from the amplitude equation near the onset of TVF. 

For the weak coupling case where CiC3 < \D\ — Dj|w, the coupled equations can 
be simplified to a diffusion model. Fig. 3a shows that for a small qy, the small C\\, C± 
case, the phase dynamics is similar to the case of TVF. The diffusion coefficient can be 
evaluated by Eqn. 4 and it is ~1.4. 

78 

A-22 



Z   20 

200 

Figure 3. Responses of the axial phase variable in{T\) to a modulation of period T = 
53.3. Number of vortices N=60. (a) m=3, « = 0.140; (b) m=7, e = 0.813. The straight 
line traces the shift in phase from vortex to vortex. 
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T, 
Figure 4. Responses of the axial phase variable zn{T\) to a modulation of period T = 
27.6. The flow state has « = 19.7, N=52. 

For the strong coupling case where C\\C± » 2ui{D\\ + D±), Eqn. 5 is decoupled into 
a simple traveling wave equation: 

dt1 (6) 

where c = JC\JC±. This is confirmed by our observation in the large qv (m=7) flow 
pattern and its traveling wave behavior is shown in Fig. 3b. For more details on the 
phase dynamics of WVF, see Ref. [10]. 

Turbulent Wavy Vortex Flow 

The average vortex boundary position zn of TWVF is measured with the same data 
acquisition technique as in the wavy vortex flow. A typical time series of zn(Ti) is shown 
in Fig. 4. The amplitude drops off exponentially and the phase shift of neighboring 
vortex boundaries has a linear dependence on the axial position. This indicates that 
the phase dynamics in TWVF can be described by a simple diffusion model. A diffusion 
coefficient is evaluated by Eqn. 4 from the slope of the line (phase vs. axis). It is about 
18 in this case and about 10 times larger than that of TVF. 

CONCLUSION 

We have studied the phase dynamics both experimentally and theoretically in the 
TVF, WVF and TWVF. The phase dynamics in TVF and TWVF can be described by 
a simple diffusion model, while that of WVF is governed by a coupled diffusion model. 

We thank H. Brand for persistent encouragement during this project and Z. H. 
Wang, F. Hayot and I. Mutabazi for helpful discussions. This work was supported by 
the Office of Naval Research, under contract N00014-86-K-0071 and grant N00014-89- 
J-1352. 
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The phase dynamics of flows in the Taylor-Couette system have been studied by applying a 
forced modulation to the upper boundary of a large aspect ratio concentric cylinder 
system. In a one phase variable case, the Taylor vortex flow, the perturbations diffuse along 
the axial direction and the pattern's response is well described by a simple diffusion 
model. In a two phase variable case, the wavy vortex flow, the perturbations either propagate 
as traveling waves or diffuse, depending on the coupling between the axial and azimuthal 
phase variables. In the turbulent Taylor vortex flow, where spatial coherence coexists with the 
turbulent flow, the phase dynamics of the coherent structure are described by a diffusion 
model with a diffusion coefficient an order of magnitude larger than for the laminar Taylor 
vortex flow. 

I. INTRODUCTION 

Considerable attention has been given to spatially pe- 
riodic patterns formed in nonequilibrium fluid-dynamical 
systems such as Taylor-Couette flow,1 Rayleigh-Benard 
convection,2 viscous fingering,3 and mixing layers of two 
immiscible fluids.4 In general, each system is controlled by 
an external stress R. When R exceeds a threshold value Rn 

the system undergoes a transition from a spatially uniform 
state to a periodic state, thereby breaking the translational 
invariance of the system. A typical example is the Taylor- 
Couette system, in which the fluid is confined between two 
concentric rotating cylinders (see Fig. 1). The control pa- 
rameter is the Reynolds number R ( a n, the inner cylin- 
der rotation frequency). When R is small, the flow in an 
infinitely long system has only an azimuthal velocity com- 
ponent,  and  it  is called simply circular Couette flow 
(CCF). When R exceeds /?,, a centrifugal instability gives 
rise to Taylor vortex flow (TVF) out of the base CCF. In 
TVF, the velocity field consists of a sequence of pairs of 
counter-rotating vortices stacked along the cylinders [see 
Fig. 2(a)]. The velocity field varies with distance from the 
system axis, periodically along the system axis, and is con- 
stant in the azimuthal direction. The first time-dependent 
regime, wavy vortex flow (WVF), in which an azimuthal 
traveling wave is superimposed on the TVF, occurs for 
slightly greater R in a large radius ratio system [see Fig. 
2(b)]. Upon further increasing R, the flow first becomes 
quasiperiodic, then weakly turbulent or chaotic, and even- 
tually reaches a turbulent Taylor vortex flow (TTVF) in 
which the vortex boundaries are embedded in a turbulent 
background [see Fig. 2(c)]. The vortex sizes are typically 
somewhat greater than those in TVF. The vortex bound- 
aries become difficult to discern when R/Rc is increased to 
~700,5 which is well above the range of/? considered here. 

In principle, all the above phenomena may be under- 
stood using the Navier-Stokes equation.6"10 However, the 
complexity of the equation has thus far made it impractical 
to generate full numerical solutions for comparison with 
the potentially huge number of laboratory situations. Fur- 

thermore, it is not always easy to extract the physical in- 
sights needed for a deep understanding of the flow patterns 
from such numerical solutions. Therefore, model equations 
are of considerable importance. For example, amplitude 
equations""14 can describe the dynamics of the states close 
to the onset of the first supercritical bifurcation. Amplitude 
equations are derived from the Navier-Stokes equation (or 
other basic equations) by the expansion of a small ampli- 
tude of the emerging structure. Many interesting features 
of laboratory generated Taylor-Couette flows are con- 
tained in this class of model equations.1516 

In an amplitude equation approach, the phase and am- 
plitude are independent variables. For a case where the 
wavelength has slow time and space variations, the ampli- 
tude is slaved to the phase variable and the amplitude 
equation can be simplified to a phase equation. For flow 
patterns further above the onset of Taylor vortex flow the 
amplitude equation is no longer useful, but the equations 
for phase variables are presumed still valid. 

Pomeau and Manneville17 and Kuramoto18 introduced 
the method of phase dynamics for treating nonequilibrium 
systems. A simple phase diffusion equation was derived 
from the Swift-Hohenberg equation. This phase equation 
can be applied to a nonequilibrium system that undergoes 
a supercritical bifurcation and forms a spatially periodic 
pattern. Pomeau and Manneville applied their theory to 
the weakly nonlinear regime (near the onset of the convec- 
tion state) of the Rayleigh-Benard (RB) system. A phase 
diffusion equation was derived for the RB system and the 
diffusion coefficient was found to depend on the wave vec- 
tor of the convective rolls and the distance above the 
threshold of convection. Following this, Wesfreid and 
Croquette19 and Croquette and Schosseler20 studied exper- 
imentally the phase dynamics near the onset of the convec- 
tion state in the RB system. A modulation, forced by pe- 
riodic injection of fluid, was imposed on the RB system and 
the responses of the convective rolls were studied. Their 
results partially confirmed the validity of the phase diffu- 
sion model in the RB system. Tabeling21 applied the 
Pomeau-Manneville formalism to the Taylor-Couette sys- 
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FIG. 1. Schematic diagram of the Taylor-Couette system, r, = 5.262 cm, 
/•, = 5.965 cm, and aspect ratio f = 70. 

tem and obtained a similar phase diffusion equation near 
the onset of TVF. He showed that the diffusion coefficient 
depends on the Taylor vortex wave vector and the distance 
above threshold (which was true also for the RB system). 
In addition, Tabeling suggested that Snyder's experimental 
results from a small aspect ratio Taylor-Couette system 
showed evidence of phase diffusive behavior. ' In Sny- 
der's experiment, the flow state was perturbed in a spatially 
uniform manner (a sudden increase of the inner cylinder 
frequency) and the adjustments of the cell boundaries were 
observed. It was found that the cell sizes exponentially 
relaxed to their final values, which was consistent with 

(a) (b) (c) 

Tabeling's calculation. However, the relaxation time, 
which is inversely proportional to the diffusion coefficient, 
did not seem to depend on the distance from TVF onset or 
the average wave vectors of the vortices, although this was 
not a primary point of his investigation. Following Tabel- 
ing's work, numerical simulations of the phase dynamics 
near the onset of the TVF have been performed.25 In the 
simulations, one end boundary of the system was moved to 
its final position with various speed profiles and the re- 
sponses of the vortices were studied. Phase diffusive behav- 
ior was found in the region far from the boundary. An 
experimental study of the phase dynamics in TVF was 
carried out by Gerdts,24:5 in a small aspect ratio (T - 20) 
system. As in the simulations, the first vortex was com- 
pressed by moving the upper collar of the Taylor-Couette 
system and the responses of the vortices in the bulk were 
studied. The results showed diffusive behavior and the 
measured diffusion coefficients were found to depend on 
the wave vector. 

While a significant amount of work has been done on 
phase dynamics for the one phase variable case, "" much 
less attention has been paid to the two phase variable 
situation.27"31 Based on a symmetry analysis, and using a 
slow time and space variation approximation, Brand and 
Cross proposed that the proper description for wavy vortex 
flow involved coupled diffusion equations.' "' They pre- 
dicted a propagating phase mode in the strong coupling 
limit and a diffusive mode in the weak coupling regime. 
The diffusion coefficients and coupling coefficients can be 
evaluated only for states close to the onset of TVF, al- 
though the equations themselves are valid for states far 
above TVF onset. 

Phase dynamics has usually been thought of as only 
applicable to well-ordered spatial patterns. However, there 
are circumstances throughout fluid dynamics in which rel- 
atively coherent structures exist, embedded in a back- 
ground of turbulence. It is reasonable to ask whether phase 
dynamics might be relevant for describing the behavior of 
those coherent structures, ignoring the small-scale fluctu- 
ations. It is in this spirit that we have studied phase dy- 
namics for turbulent Taylor vortices. Specifically, we have 
asked whether phase equations can be used to describe the 
slow temporal and spatial changes of the coherent struc- 
tures in TTVF (where the coherent structures are the Tay- 
lor vortices themselves)? Theoretical and experimental 
work on this problem has been lacking until now. 

An overall experimental study of phase dynamics in 
the Taylor-Couette system is presented in this paper. Brief 
reports of some of these experimental results have 
appeared.26-30~32 Section II provides the theoretical back- 
ground. Section III describes the experimental setup and 
the data acquisition techniques, as well as the experimental 
results on phase dynamics in TVF, wavy vortex flow, and 
turbulent Taylor vortex flow. Section IV summarizes our 
work. 

FIG. 2. Representative flow regimes: (a) TVF at f = 0.140 and ,Vp=30, 
where .V, is the number of vortex pairs, (b) WVF at ( = 0.813, \p = i0, 
and m = 7. where m is the number of waves in the azimuthal direction, 
and (o TTVF at <f= W.7 and .\> = 28. 

II. THEORETICAL BACKGROUND 

The control parameter for the Taylor-Couette system 
with the outer cylinder at rest is the Reynolds number R, 
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defined as R = Clf/d/v, where il, is the inner cylinder ro- 
tation rate, /■,■ is the inner cylinder radius, d is the gap 
between the inner and outer cylinders, and v is the kine- 
matic viscosity. When R exceeds the threshold Rc (neglect- 
ing Ekman effects near the ends of a finite system), the flow 
changes from a uniform circular Couette flow (CCF) to a 
spatially periodic Taylor vortex flow (TVF). In the vicin- 
ity of T0 the velocity field can be described as 

VTVF(r,f) = Vcc(r,r)+v(r,r), 

v(r,t)=A(z,t)y(r)e"l<z
+A*(z,t)v*(r)e-i',<*, 

(1) 

where Vcc(r,f) and VrvF^,t) are the velocity fields for 
CCF and TVF, v(r,r) is the perturbation velocity field, 
v(r) is the eigenfunction of the velocity field, qc is the 
critical wave vector corresponding to the lowest T0 and 
A(z,t) is the complex amplitude which retains only the 
slow time and space variations. The amplitude equation 
can be derived by the general procedure of Newell and 
Whitehead,12 it is 

dA .PA 
T0-^ = eA+^0-^-g\A\lA, (2) 

where r0 is the perturbation amplitude growth rate, £0 is 
the correlation length, z is the coordinate in the axial di- 
rection, g is a factor relating to the scale of A, and 
e= (R-Rc)/Rc is the distance to the onset of TVF. 

Because of the periodicity of the TVF in the axial di- 
rection, A(z,t) can be written in the form16 

A(z,t)=A0eu>ze"", (3) 

where q = q—q0 q is the wave vector of the TVF, and a is 
the growth rate of the perturbation. A steady state for 
*>fiW is obtained by substituting Eq. (3) into Eq. (2), 
with tr e result being 

4) A0= V<e-la?V* 
However, this solution is not stable over the whole range of 
q. The stability of A0 may be determined by assuming 
A(z,t) = A(z,t)e^ where 

A(z,t)=A0 + a(z,t),    V = qz+xp{z,t); (5) 

a{z,t) and tA(z,r) are small perturbations of the steady so- 
lution Atf'qz. A standard linear stability analysis of Eq. (2) 
with the above assumptions gives 

d2^ dt/- 

where 

/>„ = 
?{e-HW) 
To U-So?") 

(6) 

(7) 

The steady state A0 is stable when the diffusion coefficient 
is positive. Therefore instability occurs in the range 
^Iq2 <e< 3£2#2. Here e< It&q1 produces the Eckhaus 
instability.16"-35 

If we increase R further, the rotational symmetry of 
the TVF is broken and a new pattern emerges, wavy vortex 

flow (WVF). Therefore, a second phase variable <t> is in- 
troduced to describe the phase of the azimuthal wave mo- 
tion. A more precise definition of i/> and 4> can be seen by 
examining the form of the amplitude of the wavy vortex 
flow: 

A= |£|e''*+/|C|e'V(V+*>+c.c.), 0 
where qy is the azimuthal wave vector, y is the azimuthal 
position, B and C are constants, and C—0 at e^ the onset 
of WVF. Brand and Cross27 proposed coupled diffusion 
equations to describe the phase dynamics in WVF accord- 
ing to a symmetry analysis. The equations for WVF must 
be invariant under two symmetry operations: (1) z — — z, 
V> 0, 0-0; and (2) y y, qy qr 0-0, 0 <t>- 
Thus they argue that the appropriate phase equations are 

dip d2^        d<}> 

ä7=z>I^7+Cldz' 

d<j> d2<f> d\li 

*=D^+c*Tz' 

(9) 

where z is along the system axis, Dx and D2 are the diffu- 
sion coefficients for the axial and azimuthal directions, and 
C|, Cl<xqy represent the coupling strength between axial 
and azimuthal motion. The coefficients can be derived fol- 
lowing the same procedure as in the case of TVF close to 
onset. 

Assume the phase variable 0 (and also 4> through the 
coupling of the equations) is perturbed by a term propor- 
tional to exp[i(Kz—(ot)], and substitute into Eq. (9). We 
then eliminate terms in (f> and find the following relation 
between K and co: 

^    MJ?t+Z>2)-CiC2+vA 
: ~ 2A-02 

,    /      2m(D 2, ,2 2ioi(D\+D2)    (Z>,-Z)2)V 
(10) 

tc2 c\c\ 

For the strong coupling case, i.e., ClC2>2(o(Di+D2), we 
have K=(o/c, where c = yjCxC2. Equation (9) in this case 
has the characteristic form of a wave equation: 

aV    #0 
:0. (11) 

For the weak coupling limit, where C1C2<|£>1-Z)2|w, we 
have K2= —ia/Dx or K2= —ico/D2, a typical situation for 
a diffusion process. In Taylor vortex flow, C, = C2 = 0, the 
weak coupling condition is trivially satisfied, and the dif- 
fusion model for TVF is recovered. 

With sufficient increase in e the flow becomes chaotic 
or weakly turbulent. As e is increased still further, the flow 
becomes increasingly turbulent. The vortices remain as 
large-scale structures (similar in size to the laminar Taylor 
vortices), periodically stacked along the axis of the system. 
The vortex boundaries fluctuate quasiregularly with a pe- 
riod of ~ 1/fi,. The number of phase variables involved in 
this case is uncertain. However, we have found that the 
average vortex boundary position is a well-defined, deter- 
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ministic vanable. We argue that a phase equation approach 
would still be valid for such a coherent structure of vortices 
embedded in an otherwise locally turbulent flow. 

A possible analogy for motivating a phase dynamics 
approach for TTVF is in the hydrodynamic equations for 
certain equilibrium systems." For example, consider nem- 
atic liquid crystals.36 In nematics the positions of the con- 
stituents show short range order, whereas the molecules 
align on average spontaneously parallel to a certain direc- 
tion characterized by a unit vector, the director, and thus 
show broken orientational symmetry. The director is a 
quantity which is averaged over many molecules in space 
and over many collision times. That is, close to equilibrium 
the hydrodynamic equations are already averaged over the 
shorter time and length scales. We argue that this ap- 
proach would be useful for the TTVF and similar flows. 
That is, we consider equations for the average location of 
the vortex boundary between neighboring vortices, assum- 
ing that the fluctuations of the vortex boundaries are fast 
compared to the time scales in which we are interested. 
After the fast fluctuations are averaged out, the coherent 
structure left is similar to TVF. Therefore, we predict that 
the slow perturbations to the coherent structure will diffuse 
along the axis of the system in a manner analogous to the 
case of TVF. 

III. EXPERIMENTAL TECHNIQUE AND RESULTS 

A. Experimental setup 

Our experiment was conducted in two concentric cyl- 
inders with the outer one fixed (see Fig. 1). The inner 
cylinder was made of black Delrin plastic with radius 
r, = 5.262 cm and the outer cylinder was of Plexiglas with 
inner radius r0—5.965 cm, which gave a radius ratio 
T7 = r,/ro=0.882. (For further details on the basic system, 
see Ref. 37.) The inner cylinder rotation frequency was 
controlled by a Compumotor stepper motor (model M83- 
93) which is precise to 0.001 Hz. A PDP-11/73 was inter- 
faced through the Compumotor indexer to control the 
stepper motor. The working fluid region was bounded at 
both ends by Teflon rings. The lower end ring fit snugly 
against the outer cylinder, with a gap of ~0.8 mm to the 
inner cylinder. The upper ring was attached to a traversing 
mechanism, described later, which allowed the ring to os- 
cillate along the axial direction over a maximum amplitude 
of ±0.5 cm. There were gaps of ~0.8 mm between the 
upper Teflon ring and both the inner and outer cylinders. 
In this way, the fluid could move past the ring when it 
oscillated. The distance between the two Teflon rings ini- 
tially (before the modulation was added) was 49.5 cm, and 
therefore the average aspect ratio T = L/(r0—r,)=70.4. 
The working fluid was a solution of double distilled water 
and 44% glycerol by weight, which has a kinematic vis- 
cosity v = 4.0 cS. Temperature regulation in the room was 
within 1 °C, with the fluid temperature itself varying by a 
few tenths of a degree. One percent by volume of Kalliro- 
scope AQIOOO was added for visualization. The fluid could 
be used for at least two months before it deteriorated. 

The flow pattern was viewed under room illumination 
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FIG. 3   Schematic diagram of the modulation device that provides the 
vertical movement of the upper collar of the Taylor-Couette system. 

with a 512x480 pixel CCD camera (Javelin Model JE- 
7242 Newvichip) that was connected to an image proces- 
sor (Imaging Technology FG-1024). For a typical situa- 
tion, this camera and processor provided a resolution of 34 
pixels per vortex. The image processor board was installed 
in a PC-AT (Everex System 1800). The board digitized a 
picture of the flow pattern and the PC recorded the light 
intensity profile along a vertical line. A c language pro- 
gram was used along with the software package HALO (Im- 
aging Technology) for the frame grabbing and basic pro- 
cessing. The positions of the vortex boundaries were 
determined by finding the local minima of the light inten- 
sity profile. In a normal data taking process, we recorded 
the intensity profile of a vertical line in the dynamic mem- 
ory of the PC, found the minima, and saved their locations 
into a data file. The data files were then transferred by 
ethernet to a VAX 8650 system for data analysis (curve 
fitting or plotting). 

The oscillation of the upper ring was controlled by a 
traversing mechanism. A schematic diagram of this device 
is shown in Fig. 3. It consisted of two basic parts. The 
lower part was a plate connected to the moving Teflon 
ring. The connections were made by three 5 in. brass rods 
running through the top cover of the concentric cylinders 
system. The plate was supported against gravity by three 
torsional springs that were mounted on the top cover. The 
upper rotating ring was connected to the supporting plate 
by a ball bearing track. The upper ring was threaded on the 
inside and a pulley was mounted on the outside. A timing 
belt connected the pulley with a Compumotor M83-93 
stepper motor. The translations of the rotating ring pro- 
duced the vertical displacement, which was transmitted to 
the upper Teflon collar by the supporting plate and the 
three brass rods. Four rotations of the stepper motor pro- 
duced a 1 mm displacement of the upper collar. The step- 
per motor was controlled by a Compumotor indexer, 
which was controlled in turn by a PDP-11/73 computer. A 
safety stop was designed with the joy stick input of the 
indexer to prevent the motor from overrunning the range, 
thereby damaging itself and the system. 
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All the numbers in the following are dimensionless 
unless otherwise indicated. Lengths are scaled by the gap d 
( = r0 — r, = 0.703 cm), and times are scaled by d2/\\ which 
is —12.3 sec in our system. 

B. Experimental results 

1. Taylor vortex flow 

A TVF pattern [Fig. 2(a)] is obtained by increasing 
the rotation speed slightly above the critical Rc= 112. Two 
types of perturbations, induced by motion of the upper 
ring, were applied to the pattern, either a sinusoidal forcing 
or a step function forcing. The responses of the vortex 
boundary positions to the perturbations were then re- 
corded as a function of time. 

The axial phase variable V is directly proportional to 
the vortex boundary position variation. Assuming zn{z,t) is 
the Hth vortex boundary position in the axial direction, and 
z°„ = nir/q is the vortex boundary position before the upper 
ring oscillates, then the phase of the amplitude at the «th 
vortex boundary = (* + q,z)\l=Zii = tk(z„,t) + qz„ 
= nir. This gives 

zn=z»-il,(zn,:)/q. (12) 

which shows that the axial phase variable is directly pro- 
portional to the vortex boundary position variation. In the 
sinusoidal modulation case, the phase at z—0 exactly fol- 
lowed the collar's motion, which follows from the fact that 
the period of the modulation 7>crVv, the diffusion time 
through a vortex, where T is typically several thousand 
seconds. This resulted in the following boundary condition: 

tp\2=0=\p0sm(.o)t). (13) 

Here ipo/q and <u are the modulation amplitude and fre- 
quency. Solving Eq. (6) with the above boundary condi- 
tion, we obtain 

rp(z,t)=\l/0e-m sm(cot-ßz), (14) 

(15) 

(16) 

a=ß= vW2Z>||. 

Substituting r(>(zn,t) into Eq. (12) gives 

zn=z°n-^-^ %m{<ot-ßzn)/q 

=z°-^-"° sm(cot-ßz°n)/q. 

Equation (16) shows that the vortex boundary position is 
a sinusoidal function of time, the amplitude of the motion 
decreases exponentially along the axial direction, and the 
phase shift between neighboring vortices has a linear de- 
pendence on the axial position. The diffusion coefficient 
can be evaluated from the parameters a and ß, and a and 
ß should have the same value according to Eq. (15). 

In the second experiment, the upper collar is moved to 
a final position at a constant speed, which leads to the 
approximate boundary condition: 

tf|z.o=W). (17) 

where H(t) is the step function, 0 for / <0, 1 for />0. This 
is an approximate boundary condition owing to the finite 

1500 

FIG. 4. Vortex boundary locations of TVF subjected to the periodic 
boundary modulation (r=247), / represents time and z is the axial po- 
sition. z=0 is the location of the upper collar. The solid line traces the 
shift in phase from vortex to vortex. 

time (typically 48 sec) for the collar to reach its final 
position, but analysis of our data shows that this approxi- 
mation has a negligible effect in the region beyond a few 
vortex diameters from the boundary. However, by impos- 
ing a step function, we are measuring the reaction of the 
flow pattern to a modulation with a wide frequency band 
instead of just a single frequency. The fact that phase dy- 
namics should only be valid for slow temporal and spatial 
changes indicates that the step function experiment may 
not be as accurate as in the sinusoidal function case. The 
advantage of the step function is that it takes about 40 min 
to take one set of data compared with 6 h in the sinusoidal 
case. This enabled us to collect several data sets (~ 10) for 
each flow state and thus obtain an average value for D^ . 

Substituting Eq. (17) into Eq. (6), we obtain z„(z,f) as 

z„(z,r)=z°-<f0erfc(V2 

=z„ -rf0erfc(z°/2 (18) 

where d0 is the distance that the upper collar moves and 
erfc is the complement of the error function.38 

In the periodic modulation case, the sinusoidal motion 
of the upper collar had a typical amplitude of d^/d=0.480 
and a period of 3040 sec. Before commencing the oscilla- 
tion, the TVF was left at least an hour so that the flow 
reached its steady state (this occurs in our system in about 
half an hour). Two hours after the oscillation of the upper 
ring began, light intensity profiles along a vertical line were 
recorded once every 2 min for a period of 5 h. Figure 4 is 
a typical data set. 
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The response of each vortex boundary is necessarily a 
sinusoidal function of time, with an amplitude and phase 
shift as predicted by Eq. (16). By fitting the data with the 
following equation 

-a sin(ü)t-ö), (19) 

where a and 8 are the amplitude and the phase of the 
vortex boundary motion, we found that In a and 8 were 
linearly related to z°n. as shown in Fig. 5. The slopes of the 
lines yield a and ß, from Eq. (15), and in turn D^, The 
variation of a and ß for different runs was less than 20%. 

For a TVF, the Ekman pumped end rolls are normally 
larger than the rolls in the center of the cylinder. It has 
been suggested that, for finite cylinders, a should always be 
smaller than ß,i9 as found by taking the effect of the Ek- 
man rolls as a perturbation in the derivation of the phase 
equations from the amplitude equation. This is consistent 
with our observations, as shown in Fig. 6. A detailed cal- 
culation is underway to attempt to verify this assertion. 
(To compute the diffusion coefficient we have used only 
the ß values, which, coming from the phase shifts, are more 
precisely determined.) 

Repeating the above experiment with different modu- 
lation frequencies, we found that the diffusion coefficient is, 
within our experimental uncertainty, independent of mod- 
ulation frequency. These results are summarized in Table 
I. 

The diffusion coefficient depends on the Taylor vortex 
wave vector, as suggested by the Pomeau-Manneville dif- 
fusion model. From the Eckhaus instability curve, we 
know there is a limited range of stable states of TVF for a 
fixed e. The detailed history of the adjustment of ft,- selects 
the particular Np within the stable range. Our procedure 
for obtaining a stable TVF state with different Np for a 
fixed e is as follows. For q = qc (or JV/7 = 35 in our system), 
we increase the inner cylinder rotation rate very slowly (in 
about 20 min) from 0 to the desired e. For a larger Np 
(Np>35) state, ft, is increased abruptly from 0 to the 
selected e. For a smaller Np (Np<35) value, a stable wavy 
vortex state is obtained first and any defects that may form 
are given time to annihilate or otherwise leave the flow. 
Finally, ft, is adjusted to the e chosen for the experiment. 
Here Du was measured with several different wave vectors 
and it was found to decrease when the wave vector q de- 
viated from qc. Figure 7 shows the typical dependence of 
Df on the vortex wave vector. The correlation length £0 

and correlation time r0 are obtained by fitting this with Eq. 
(7). These results are summarized in Table II. 

In the step function modulation case, the upper collar 
moves at about 0.125 mm/sec to a final position in 48 sec, 
thereby increasing the aspect ratio by 0.853. The data ac- 
quisition technique used for the oscillatory case was used 
here as well. The light intensity profile along a vertical line 
was recorded once every 12 sec over a period of 40 min 
after the oscillation was started. Figure 8 shows a sample 
result. From this plot we can see that the response time of 
each vortex increases with the distance of the vortex from 
the upper boundary. For instance, the time for the second 
vortex boundary to reach halfway to its steady-state posi- 
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FIG. 5. The circles are the experimental data and the solid lines are from 
the fit to the diffusion model, (a) a is the amplitude of each vortex 
boundary motion; (b) <5 is the phase shift of the vortex boundary motion. 

tion was 31.1 sec after the collar came to rest, while the 
third vortex boundary took 71.9 sec. In this case at least, 
the approximation of Eq. (17) is valid for the vortices 
beyond the three adjacent to the collar. Fitting the data 
with the equation 

zn=z°-d0 erfc(5n/ v
rf), (20) 
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FIG. 6. The difference between ß and a due to the Ekman rolls; y is a for 
(O) and ß for (X). 

where sn = z°/2 ^DJJ according to Eq. (18), we obtain s„ as 
a linear function of z°, as shown in Fig. 9. The slope of the 
line in Fig. 9 gives the value of Du . Repeating this process 
for different TVF wave vectors, we obtained a relation be- 
tween D« and the wave vector similar to that found under 
periodic modulation, as shown in Fig. 7(b). The resulting 
values of £0 and r0 are compared in Table II with those 
from the periodic cases and numerical simulations.40,41 Our 
values for £0 and T0 differ from the values in Ref. 40, while 
Du from Ref. 41 is within our error bars for three cases. In 
both numerical cases, the system geometry studied was 
similar to ours. That we differ with Ref. 40 suggests we 
may have been operating outside their numerical limit of 
e—0. Further experiments with e smaller than 0.06 may 
yield better agreement. 

As shown in Fig. 7, the range of wave vectors accessi- 
ble to us is limited due to the large radius ratio of our 
system. According to the Eckhaus theory, 16.33-35 the range 
of stable wave vectors for TVF is larger for a smaller radius 
ratio system where it is possible to go to higher e before 
reaching the wavy instability. Therefore, it is expected that 
an experiment in such a system will show a greater depen- 
dence of Du on the wave vector.24 

TABLE I. Values of the diffusion coefficients obtained from e ents 
with different modulation period T for a TVF state with i and 
e = 0.074. 
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FIG. 7. Relation between D^ and the square of the wave vector, q2, for 
(a) the periodic modulation case; (b) the step function modulation case. 
Dotted lines are the experimental data and the solid lines are the fits using 
Eq. (7). 

2. Wavy vortex flow 

A wavy vortex flow [Fig. 2(b)] can be obtained in a 
large radius ratio system by increasing the Reynolds num- 
ber to slightly above the onset of TVF. The onset of WVF 
is at 6^=0.223 for our system. The data acquisition process 
is complicated by the azimuthal wave motion of the vortex 
boundary. The vortex boundaries move on two time scales, 
the slow time T (corresponding to the slow upper bound- 
ary oscillation, with a period of several minutes) and the 
fast time 7*, (corresponding to the azimuthal wave motion 
of period =1 sec). We define Z„(T) to be the average 
boundary position of the nth vortex due to the slow upper 
boundary modulation, where r is real time scaled by d~/v. 
Thus, i//=q[z„(T) —z°], where q is the axial wave vector. 

The procedure for obtaining z„{r) is as follows. We 
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TABLE II. Values of the correlation length and time for TVF from our 
experiments and the numerical simulations.14' The diffusion coefficients 

are for .Vp = 35. 

D So l/-o e Source of data 

1.63=4=0.12 0.260 24.3 0.0740 periodic 
modulation 

1.59 ±0.07 0.293 18.9 0.0740 periodic 
modulation 

1.54±0.20 0.288 19.3 C0621 constant 
modulation 

1.58 ±0.17 0.301 17.4 0.0829 constant 
modulation 

0.382 13.109 Ref. 40 

1.70 0.070 Ref. 41 

3  - 

first take about 100 consecutive line profiles (covering ap- 
proximately ten azimuthal waves) in 7 sec and find the 
intensity minima. A typical space-time diagram of the 
wavy vortex boundary positions is shown in Fig. 10. The 
data file records locations of minima of the vertical lines 
(z„,0- Our interest is in the average position of each vortex 
boundary. Thus we need to rearrange our data file, putting 
the locations of each vortex boundary together, and then 
averaging the locations for each line. The following tech- 
nique is used to sort out the locations of each vortex 
boundary. The original data (locations of vortex bound- 
aries) are put into an array, S(z.t), where z is the axial 
position and t is time: 

0 ^—- 
2 4 6 10        12        14        16 

FIG. 9. Relation between i„ and the axial position z for a TVF state at 
e=0.062, A> = 34. 

S(2,f) = l,    when (z,t) is located at the vortex 

boundary, 

=0,   otherwise. (21) 

The numbers S{z,t) over the time range (a typical time 
range is ~7 sec) at a fixed z value are then added together. 
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FIG. 8. Vortex boundary locations of TVF subjected to the step function 
boundary modulation. Modulation is added at (=0. Dotted lines are the 
experimental data and solid lines are the error function fits to the data. 
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FIG.  10. Space-time diagram of wavy vortex boundary positions at e 
= 0.813, Sp = ll, m = 7. 

M. Wu and C. D. Andereck        2439 

A-33 



When the sum equals 0, it means that a particular z value 
locates the separation region of two vortex boundaries. Dif- 
ferent vortex boundaries are thus identified and the azi- 
muthal wave motions are averaged out along each vortex 
boundary to obtain J„(r). This technique becomes more 
difficult to apply when the vortex boundary motions over- 
lap in the axial direction (for instance, in the case of mod- 
ulated wavy vortex flow) since our method can no longer 
separate each vortex boundary. In order to find F„(r) in 
such a case we would need to fit S(z,t) with a series of 
sinusoidal functions. Further work will be necessary to 
study the phase dynamics in either modulated wavy vortex 
flow or large amplitude wavy vortex flow. 

We first discuss our measurements of Z„{T) for flow 
states with different m. An m = 3 state was obtained by 
increasing e slightly above the onset of TVF, to e = 0.140. 
A typical result is shown in Fig. 11(a). The amplitude of 
zn(f) decreases exponentially with distance from the 
boundary [Fig. 12(a)], and there is a linear phase shift 
between oscillations of neighboring vortices [Fig. 12(b)]. 
These are characteristics of a diffusive mode, as shown by 
Eq. (16). The diffusion coefficient in this case is —1.4, 
comparable to that for TVF. Increasing e to 0.813, the 
system reaches a new stable state with m = l. In order to 
obtain m = 7 with the same Np, e must be changed rapidly 
from 0.140 to 0.813. With the same modulation period as 
for the AW = 3 case, T=53.3, there is an axially propagating 
wave in the middle region of the cylinders, as shown in the 
space-time plot of Fig. 11(b), evidently described by 
zn— z°n<xsin(kz—at), with small damping.27 The complete 
amplitude of zn(r) versus axial position is shown as the D 
data points in Fig. 12(a). We identify the behavior in the 
central region, from z~l to ~35 as a propagating mode 
because (1) the amplitude is roughly constant over many 
vortices, in contrast to the diffusive case; and (2) the phase 
shift 8 of neighboring Z„(T) in this region depends linearly 
on the axial position [D line of Fig. 12(b)], which is to be 
expected for a traveling wave but not a standing wave. 

The behavior in the end regions for T=53.3 is rather 
different from that in the bulk. Diffusive behavior is ob- 
served in the vortices near the upper (oscillating) collar of 
the cylinders (0<z< 10). We attribute this to two effects. 
First, the azimuthal wave amplitude aw (i.e., in the absence 
of our imposed perturbation) decreases rapidly near each 
end of the system from its value in the bulk. The relation 
between aw and z is shown in Fig. 13. The healing length 
for aw is about the size of three or four pairs of vortices. It 
decreases with increasing e. The small aw at the ends evi- 
dently weakens the coupling between 0 and <b, thereby 
contributing to the diffusive behavior near the collars. Sec- 
ond, the vortices near the collar are ~3% smaller than in 
the middle region. The diffusive behavior near the collar is 
consistent with the observation, discussed below, that the 
diffusion coefficient is relatively larger for smaller vortices. 
The falloff of the Z„{T) amplitude in the lower end of the 
cylinders [z> 30 in Fig. 12(a)] is evidently a finite length 
effect. The phase shift in this region is also a linear function 
of the axial position with a slope close to that of the phase 
shift line for the traveling wave in the middle of the system. 

20 

15 

0 n0 100 ISO 200 

Z    20 

200 

FIG. 11. Responses of the axial phase variable z„(r) to a modulation of 
period 7"=53.3. ,Vp = 30, (a) m = i. e = 0.140; (b) m = 7, e = 0.813. The 
straight line traces the shift in phase from vortex to vortex. 

The effects of modulation frequency on the phase dy- 
namics were also studied. Figures 12(a) and 14 show that 
for a fast modulation, the amplitude drops off more rapidly 
near the upper collar than for a slower modulation. This is 
consistent with the diffusion model, where a 
cxexpf—   /(«/2£>j|)z].   The  constant   amplitude   region 

where the propagating mode exists shortens as the modu- 
lation frequency decreases, and it finally collapses into a 
straight line for very long periods of oscillation. For exam- 
ple, for modulation period T> 101 [* and D lines of Fig. 
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FIG. 13. Azimuthal wave amplitude aw versus the axial position z, z=0 
is the position of upper collar, and the WVF state is at €=0.813, with 
Sp = 21 and m = l. 

sectioned into three parts, 0<z<19, 19<z<38, and 38 
<z<54.) 

The vortex size dependence of the phase dynamics was 
also investigated. Figure 16 shows the amplitude of Z„(T) 

0.5 

0.4 

10 20 30 

""?»a 

FIG. 12. Amplitude (a) and phase shift (b) of z„(r) versus axial posi- 
tion. The bar represents the largest error of all the data points. X: m = 3, 
Np = 30, € = 0.140, r=53.3; D: m = 7. .\>=30, e=0.813, T=53.3; •: 
m = 7, Np = 30, €=0.813, 7"=207. The solid lines are fits to the data. 

14, and the X data points of Fig. 12(a)], the amplitude 
decreases linearly with z, with a slope 0.0137~l/r. The 
slope here is scaled by the maximum amplitude of the 
oscillation of the upper collar. This is a typical solution of 
a propagating wave equation when the wavelength is much 
longer than the system itself. The corresponding phase 
shift between neighboring Z„(T) (* and D lines of Fig. 15) 
is zero, which means that the modulation is slow enough 
for each vortex to respond essentially simultaneously. (The 
discontinuities in Fig. 15 come from the fact that the data 
were taken separately from different sections of the flow 
pattern in order to obtain higher resolution. The pattern is 

0.3  - 

0.2 

0.1 

0.0 

a" 8 
X     fl 

w: 

S° sDX», 

«X- 

li.iiL 

0 10 20 30 40 50 60 

FIG. 14. Amplitude versus z for the state €=0.813, Np=21, and m = t, 
for different modulation periods: 7"=27.6 for •; 52.0 for X; 101 for *; 
207 for a. 
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FIG. 15. Phase versus z for the state e=0.813, Np-21, and m = %, for 
different modulation periods: 7"= 27.6 for •; 52.0 for X; 101 for *; 207 
for D. 

FIG. 17. Values of traveling wave speed c vs e for m = 8, Sp = 21, and 
T = 20 for O, 27.6 for X. The bar represents the largest error of all the 
O data points. 

along the axis for the same e and m, but different vortex 
sizes. The amplitude decreases more rapidly for Np—30 
than for Np= 27, showing the diffusion coefficient is larger 
relative to the coupling coefficients for smaller vortices. 

- \ 
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* 54 
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"IG. 16. Amplitude a of z„(r) versus axial position for different vortex 
izes. The bar represents the largest error of all the data points. 7"= 28, 

€=0.813, m = 7, and A'(=2A>) as indicated. The solid lines are expo- 
nential fits to the data. 

Compare this with the behavior found in Taylor vortex 
flow (see Fig. 7 and Ref. 26). 

The slope of ö(z) vs z yields the traveling wave vector 
K, and in turn the wavelength, which is about 365 for the 
conditions of the D data points of Fig. 12(b), longer than 
the system. Knowing K we can compute the traveling wave 
speed c. For this representative case we obtain the value of 
c = 7 (or 0.4 cm/sec), which shows this is a very soft sys- 
tem compared with sound propagation in liquids or solids. 

Having established that a propagating mode exists for 
the strong coupling case, i.e., for large vortices, large azi- 
muthal wave number and large wave amplitudes, we can 
ask further questions about the nature of the propagation. 
For example, we measured the traveling wave velocity c in 
the middle section of the cylinders as a function of e (see 
Fig. 17). For a wavy state with fixed m and A', increasing 
€ corresponds (roughly) to increasing azimuthal wave am- 
plitude. Thus the increase of c with e in Fig. 17 implies that 
the coupling strength increases with the azimuthal wave 
amplitude. Wave speed c can also be evaluated from the 
amplitude equation27 close to the onset of TVF. However, 
the calculated value shows only a weak dependence on e, 
changing from 0.63 to 0.65 for a variation of e from 0.5 to 
1.5. This difference is not unreasonable as the amplitude 
equation approach should be useful only for very small e. 
Further theoretical work is necessary to understand the e 
dependence of c. 

The traveling wave speeds for states with fixed Ar and 
m were measured for different modulation frequencies. 
Figure 17 shows that the measured c is larger for the lower 
frequency case. This indicates that either the actual disper- 
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sion relation is not linear or the linear phase equations are 
not sufficient to explain the experiment in quantitative de- 
tail. Further work is clearly needed to determine the dis- 
persion relation in the wavy state. 

The intermediate states m = 4,5,6 are obtainable and 
stable, but the azimuthal wave amplitude is so large that 
neighboring vortices overlap in the axial direction and as a 
result our basic data analysis program is not capable of 
finding the average vortex boundary positions. Therefore, 
no results have been obtained in this region. This is a 
rather interesting problem to be explored experimentally. 
As pointed out by Brand,27,42 the phase dynamics in this 
region should give rise to an overdamped mode. 

3. Turbulent Taylor vortex flow 

We turn now to the behavior of coherent structures in 
a turbulent flow, the TTVF [Fig. 1 (c)]. A TTVF is formed 
when e is increased to er~20 for a vortex pair A^ = 26 
state. The threshold for this state, eT, is not critical for our 
purposes, but appears to vary with the vortex size, being 
lower for larger vortices (i.e., smaller Np). A representa- 
tive space-time diagram of the vortex boundary positions is 
shown in Fig. 18(a). The vortex boundaries fluctuate on a 
time scale of ~ 0.1 sec. Waiden and Donnelly43 studied the 
time dependence of a similar state and found that its Fou- 
rier spectrum had a peak frequency ~ 1 % larger than the 
cylinder rotation frequency Q, embedded in a noise band. 
The peak was apparently related to the presence of waves 
on the vortices. The presence of noise suggests that the 
vortex boundary position is a stochastic variable and, 
therefore, the number of phase variables involved might be 
unclear at first sight. However, we found that the average 
vortex boundary z °n is a deterministic variable in a limited 
range of e values (for Np = 21, 15<e< 19). Here average 
means averaging out the fast fluctuations along the azi- 
muthal direction. We average the vortex boundary posi- 
tions over a longer time scale than that associated with the 
turbulent fluctuations, e.g., ~7 sec, and record the average 
vortex boundary positions zn{r) once every 60 sec. We find 
that Z„(T) is constant for at least 3 h [see Fig. 18(b)]. This 
indicates that TTVF possesses strong spatial coherence 
even though the flow itself is certainly turbulent. Our fo- 
cus, then, is on the response of the coherent structure to the 
very slow perturbation imposed on the system. 

The basic experimental approach and data acquisition 
technique is the same as that for TVF and WVF. So, a 
sinusoidal forcing is added to the system through the upper 
collar and the responses of the average vortex boundary 
positions Z„(T) are measured. A line profile of the TTVF 
pattern is recorded and the vortex boundaries are located 
by finding the minima of the light intensity profile. Here z„ 
varies on two distinct time scales, the fast time turbulent 
fluctuations (7",~0.1 sec), and the slow time variation 
(T~5 min) due to the oscillation of the upper collar. The 
technique described in Sec. Ill B 2 is used to average out 
the fast fluctuations. A typical time series of z„(r) is shown 
in Fig. 19. The amplitude drops off* exponentially and the 
phase shift of the boundary line motions varies linearly 
with the axial position, as shown in Fig. 20. This indicates 
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FIG. 18. Space-time diagram of the boundary positions of a turbulent 
Taylor vortex flow with e= 19.7, Np=21, before (a) and after (b) aver- 
aging. 

that the phase dynamics in TTVF can be described by a 
simple diffusion model, as suggested in Sec. II. From the 
slope of the line in Fig. 20(b), the diffusion coefficient can 
be evaluated by Eq. (15), which is about 24 in this case. 
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FIG. 19. Responses of the axial phase variable z„(r) to a modulation of 
period r=27.6. The TTVF has e= 19.7 and Np=26. 

The amplitude and phase shift of zn(r) of TTVF are 
plotted in comparison with those for TVF (Fig. 20). Fig- 
ure 20(a) shows that the amplitude drops off more rapidly 
for the TVF than for the TTVF. Figure 20(b) shows that 
the phase shift for TVF has a steeper slope than that for 
TTVF. Both results indicate that the diffusion coefficient 
for TTVF is larger than for TVF, the ratio being ~ 14 for 
the particular parameters we have selected. We attribute 
the large diffusion coefficient of the TTVF to the efficient 
momentum transport of the turbulent fluctuations of the 
TTVF.44 It will be interesting to explore the dependence of 
the diffusion coefficient on e, particularly at very high e as 
the vortices become less well defined. It will also be useful 
to compare the results on phase diffusion, which involves 
vector quantities such as momentum, with scalar diffusion 
in TTVF.45 

IV. CONCLUSION 

We have studied the phase dynamics of three distinct 
regimes of flow in the Taylor-Couette system, the TVF, 
WVF, and TTVF. A forced modulation was added 
through motions of the upper collar of the system and the 
responses of the vortex positions to the modulation were 
studied. The phase dynamics in TVF was found to be well 
described by a simple one phase variable diffusion model. 
The measured diffusion coefficients were found to decrease 
as the wave vector deviated from its critical value. In 
WVF, the perturbation propagates along the cylinder as a 
traveling wave when the coupling between the axial and 
azimuthal phase variables is strong, and diffuses otherwise. 
This is understood within a theoretical framework of cou- 
pled diffusion equations. In TTVF, the phase dynamics of 

FIG. 20. (a) Amplitude and (b) phase shift of J„(T) VS Z for a modula- 
tion period r=27.6. x data are for a TTVF state with e= 19.7 and 
A> = 26; D data are for a TVF state with €=0.075 and t\'p=ii. 

the coherent structure of vortices was found to be similar 
to that of TVF, being described in an average sense by a 
one phase variable diffusion model. The measured diffusion 
coefficient is more than an order of magnitude larger than 
that for TVF, apparently a result of the turbulence en- 
hanced momentum transport. In summary, we have estab- 
lished that the phase dynamics approach is valid for pat- 
terns with more than one-dimensional periodicity, and that 
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it can deal with turbulent flows as well. This extension of 
phase dynamics into a turbulent regime suggests that it will 
be a useful tool for attacking a wider range of problems 
than previously thought possible. 
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Hysteretic spiral turbulence is a remarkable phenomenon of coexistence of turbulent and laminar 

«ometH'"    1 r?WXX: fl°W-  WC °bSerVe and mCaSUre f0r the first *™ ■ »on-nifonn "ten in Z geometries and ,ts dependence on boundary conditions at the cylinder ends, and we explain these results 
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Spiral turbulence—the coexistence of laminar and tur- 
bulent spiral regions in Taylor-Couette flow—is high- 
lighted by Feynman1 as an example of the richness of 
phenomena described by the Navier-Stokes equations 
(see Fig.   1).   Spiral turbulence has been extensively 
studied by Coles3 and its existence region for a particu- 
lar  geometry  mapped  out  in  the   (/?„,/?,)   plane  of 
Taylor-Couette    flow    between    concentric    rotating 
cylinders.  Here /?,, and /?, are proportional to the angu- 
lar velocities n0 and n, of the outer and inner cylinder 
respectively [R« -b(b -a)tijv and /?, -a(b -a)a,/v, 
where a is the radius of the inner and b is the radius of 
the outer cylinder, and v is the kinematic viscosity] 
Subsequently Van Atta,4 at one point in the parameter 
space, measured the pitch of the spiral and mapped its 
profile in a plane perpendicular to the cylinder -.a es. 

Spiral turbulence is particularly interesting       >ng all 
fluid instabilities, because it mixes short scale «or micro- 
scale) turbulence and a well ordered structure at large 
scales. It is the prototype of the "coherent structures" of 
great interest in fluid mechanics in recent years.5 In this 
Letter we report new measurements of spiral turbulence 
in particular of the spiral pitch, for different boundary 
conditions, and propose a theoretical approach in the 
spirit of Feynman' "to find the qualitative content of the 
Navier-Stokes equations."   The novel observation that 
the pitch varies along the axis fits well into a phase dy- 
namics approach, which-we believe-is here applied 
for the first time to a situation with sustained microscale 
turbulence.   In addition the well-known34 observation 
that the turbulent spiral is of finite azimuthal width, will 
be explained as resulting from the subcritical character 
of the flow and its boundedness in the azimuthal direc- 
tion. 

It is important to stress the subcritical character of the 
laminar-spiral turbulence transition, which leads to large 
hysteretic effects.23 As shown by one of us,6 subcritical 
instabilities in general should lead to expanding or con- 
tracting turbulent domains in laminar flow. For the 
finite Taylor-Couette system, this cannot be the whole 
story. In fact, large-scale Poiseuille flow in the laminar 
region is generated by Reynolds stress in the turbulent 

region. The case of weakly inclined, supercritical Taylor 
vortices was worked out by Hall,7 who completed previ- 
ous work on amplitude equations. In Hall's work7 the 
backflow is proportional to an integral over azimuthal 
angle involving the square of the amplitude, which itself 
is proportional to the Reynolds stress.9 The theory for 
the subcritical case has not yet been worked out, howev- 
er; the same basic mechanism must be at work, and this 
allows for a qualitative understanding.   The backflow 

FIG. 1.   Spiral turbulence for fixed upper and lower boun- 
daries, aspect ratio 30, R0 - - 3000, /?, -700 (from Ref. 2). 
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counteracts the velocity of expansion of the turbulent 
spot until the latter stops. The matching of azimuthal 
Reynolds numbers (the relevant length being the azimu- 
thal width of each region) for laminar and turbulent flow 
(assumed to have the same average velocity) leads at on- 
set to roughly equal azimuthal width of each region, up 
to the mismatch between molecular and turbulent 
viscosities in the respective regions. 

The experimental apparatus used here has been large- 
ly described in a previous paper.I0 In brief, the 
geometric parameters of our system are the radius ratio 
alb — 0.882 and the aspect ratio r— L/(b— a), which 
can be as large as 73. The cylinder speeds were con- 
trolled by Compumotor stepping motors with a rotation- 
rate precision of ±0.01%. The working fluid in all cases 
was distilled water, with visualization of the pattern ac- 
complished by the addition of 1% by volume Kalliro- 
scope polymeric flakes. With a free upper surface the 
fluid level may be changed continuously while the 
cylinders rotate. Perturbation experiments in the hys- 
teretic regime were carried out by our injecting fluid into 
completely laminar flow through a small hole (0.15 cm 
diam) in the side of the Plexiglas outer cylinder. Ap- 
proximately 0.1 cm3 of fluid is injected over a time of 
less than 0.03 sec, while monitoring the visualized flow 
with a television camera mounted on a rotating table. 
The angular velocity of the table was set equal to the ex- 
pected velocity of the turbulent spots (and ultimately the 
turbulent spiral). Measurements of the pitch were made 
by use of a multiple detector reflectance technique. At 
two points along the axis, light from H?-Ne lasers is fo- 
cused on the fluid and the reflected light detected by 
photodiodes, the output of which is digitized and sent to 
our PDP-11/73 computer for analysis. The time delay 
between the two signals, together with the distance be- 
tween the detectors, yields the pitch. 

We have followed the azimuthal and axial expansions 
of a spot created at the midpoint of the cylinder in the 
manner described above. The spot created expands ini- 
tially much faster (~2 times) in the azimuthal direction 
than in the axial one as shown in Fig. 2. The azimuthal 
expansion stops as soon as about half of the perimeter 
length is reached, i.e., from our point of view as soon as 
there is sufficient backflow. The spot then breaks into 
two spots in the axial direction, which propagate axially 
and azimuthally, their width being always approximately 
that of the final spiral. These spots may then undergo 
further splitting and subsequent growth. The different 
pieces eventually connect and construct a spiral. The 
presence of axial propagation shows that the backflow 
has in fact a complex three-dimensional structure. 

Spiral turbulence is found over a wide range of Ro and 
/?,-. We limited our detailed survey to the hysteretic re- 
gime. We have found that for T~73 persistent spirals 
occurred only for R0 > -4000, and that at R0 - - 8000 
no large scale organized structure was apparent.  In this 
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FIG. 2. Axial (x) and azimuthal (*) widths of turbulent 
spots for Ro-- 3000, R, -770. The widths are scaled by the 
average perimeter length of 35.3 cm, and the time by the outer 
cylinder period of 0.91 sec. Fits to the first seven points in each 
case yields initial front velocities of 1.78 cm/sec for the axial 
case and 3.86 cm/sec for the azimuthal case. Representative 
error bars are shown for each case. 

case a "broken" spiral pattern is found, i.e., the pattern 
may be locally a spiral, but the helicity changes over an 
axial distance of the order of the cylinder diameters. 
Some regions may not show even local spirals, just tur- 
bulent patches. This same incoherent state is found with 
either free or rigid upper boundary. A simple spiral pat- 
tern does not emerge until the aspect ratio is lowered to 
~ 28. Measurements on the simple spirals at large as- 
pect ratio were therefore confined to Ro « — 3000. As 
shown in Fig. 3 these spirals were always observed to 
have a pitch that varied with axial position. We take 
first the case in which the top and bottom boundaries are 
rigid and move with the outer cylinder. If the outer 
cylinder, as viewed from above, rotates clockwise, then a 
right-handed spiral would have a lower pitch near the 
bottom of the cylinder than near the top, while a left- 
handed spiral has a larger pitch near the bottom that at 
the top. If the outer cylinder rotates counterclockwise, 
then, consistent with the first observations, a right- 
handed spiral would have a lower pitch at the top of the 
cylinder than at the bottom, while a left-handed spiral 
would have a larger pitch at the top than at the bottom. 
In other words, the pitch is lower near the end away 
from which the spiral appears to be moving. The aver- 
age pitch depends only weakly on /?,-. Its value is compa- 
tible with that measured previously.4 With a free upper 
surface the picture changes dramatically. For a counter- 
clockwise rotation of the outer cylinder, a right-handed 
spiral looks much the same as for the rigid-rigid bound- 
ary condition case, while a left-handed spiral has a much 
lower average pitch. In the former case the spiral wraps 
around the cylinder approximately twice, while in the 
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(a) (b) (c) (d) 

FIG. 3. Spiral turbulence with rss73* /?o--3000, 
Ri —950, and outer cylinder rotating counterclockwise viewed 
from above. The turbulent band always turns in the direction 
of rotation of the outer cylinder, (a) and (b) have rigid upper 
boundaries, (c) and (d) have free upper boundaries. In (a) 
and (c) the spirals propagate downward and have lower pitch 
at the top. In (b) and (d) the spirals propagate upward and 
have lower pitch at the bottom. There is a substantial average 
pitch difference between (c) and (d) as discussed in the text. 
Typical pitch angles for case (b) are 19° ± 1° at the bottom 
and 44° ±6° at the top, while for (d) they are 16° ±0.5° at 
the bottom and 29° ± 2° at the top. 

latter case it wraps around 3 times. In all of these cases 
the spiral pitch persisted over many hours of observation 
and was reproducible from run to run. 

We shall now attempt a simple phase-dynamics ap- 
proach to describe the observed pitch of the turbulent 
spiral and its variations, compatible with the symmetries 
of the problem. 

Let <p(z,t) be the mean azimuthal position of the 
spiral at height z and time t. We treat <p as a real quan- 
tity, its periodicity does not matter for the present pur- 
pose. The quantity <p is a phase in the sense that a uni- 
form shift of <p has no dynamical effect, because of the 
axisymmetry of Taylor-Couette flow. The simplest pos- 
sible form of a phase equation then takes the same form 
as that considered by Pocheau et a/.," for representing 
the effect of transverse flow on Rayleigh-Benard roll 
structure, namely, 

<f>, + v<pz"D<Pz, (1) 

We shall postpone considerations of boundary conditions, 
and note that Eq. (1) has a family of solutions 

>p — w(vt-z)/v+<t>(z), (2) 

where H- is a constant of integration and v is the apparent 
axial velocity of the spiral in the laboratory frame. <D(r) 
is considered below. The value of the pitch is undeter- 
mined, as is the wave number of the Rayleigh-Benard 
rolls in the phase equation of Ref.  11.   The absolute 

value of the pitch should be allowed to vary in a band, as 
the roll wave number. This can be taken into account" 
by the introduction of a pitch dependence in D [cf. (I)]. 
We shall neglect this in our simple approach, as well as 
any velocity dependence on pitch. The function O(z) in 
(2) is the solution of v<t>z —D<S>z: and thus of the form 

0(2) — <f>ocxp(vz/D). (3) 

The only boundary conditions compatible with phase 
invariance are <pz — a at one end (say z — 0) and <ez —ß at 
the other end (z—L). Parameters a and ß, which de- 
scribe the locally imposed pitch, could be computed in 
principle within the framework of a complete amplitude 
equation. Similar coefficients have been calculated by 
Cross12 in a different context. Those terms should take 
into account the interaction between the Ekman layer 
and the finite amplitude solution. 

We do not expect a and ß to be the same, because of 
the structure of turbulence within the spiral. The ob- 
served splitting of a spot into two, one moving upwards, 
one downwards, reflects itself in the end in the existence 
of spirals of either helicity. It corresponds to a spontane- 
ous axial symmetry breaking, which should be associated 
with a difference in the internal structure of the spots, 
made of progressive finite amplitude waves moving axial- 
ly in either direction. As the fluid outside the spiral is 
linearly stable against those waves, they only propagate 
within spiral boundaries, being emitted at one side and 
absorbed at the other. This view is consistent with the 
observed asymmetry between leading and trailing edges 
of the spiral azimuthal profile.4 Consequently, waves are 
emitted at one end of the spiral and absorbed at the oth- 
er, which leads to a being different from ß. A full pic- 
ture would need an extension of the results in Ref. 6 to 
complex amplitudes of progressive waves. 

We note that the same symmetries as above would be 
present for spiraling Taylor vortices.7,8 There too the 
pitch would be nonuniform, at least for large aspect ra- 
tios. On the other hand, the subtle dependence of wave- 
length (here pitch) upon boundary conditions'3 for 
steady structures such as Rayleigh-Benard rolls near 
threshold, does not seem to be relevant for inclined Tay- 
lor vortices. This is because their phase is always in- 
creasing or decreasing when measured at the boundary. 
Thus this phase cannot be taken as a relevant constant 
parameter for constraining the wavelength of the struc- 
ture. The general solution of Eq. (2) is thus 

<f>(z,t) ->v(i>f -z)/v+(fi0exp(vz/D). (4) 

Here <Po and w are determined by boundary conditions at 
z —0 and z ~L, 

*V 
.D a-ß 

v   l-cxp(vL/D)' 
w v 
— "Vo— ~ a. 
v D 

(5) 

There is then a continuous variation of the pitch <t>: be- 
tween a and ß. The experimental results show that a^ß, 
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generically. If a-/3, then from (5), <?o"0 and one ob- 
tains the solution of constant pitch v(z,/) — —a(vt — z). 
We note that Eq. (1) is invariant under the symmetry 

Department of Energy (Contract No. DE-FG02- 
88ER13916.AOOO), and by a CNRS Programme Inter- 
national de Cooperation Scientifique. 

z —► —z 

v— — v 

which relates two possible spirals of opposite helicity. 
This, however, also interchanges boundary conditions 
and therefore a spiral that in one helicity is compressed 
at the bottom and expanded at the top shows the oppo- 
site behavior in the other helicity. These features are 
evident in the experimental data. 

However, once the symmetry between bottom and top 
is broken, as in the case when the top interface is a free 
surface and the bottom one rigid, there is no reason 
based on symmetry that the two spirals of opposite heli- 
city are related. For the free-rigid case, this is what the 
data show. The data moreover show that for one of the 
helicities the pitch is relatively insensitive to whether the 
upper surface is rigid or free. 

Phase dynamics thus provides a simple framework in 
which to discuss the pitch of spiral turbulence, its axial 
variation, and dependence on boundary conditions. 

A final remark is the following: As reported above, at 
R0 ~ _ 8000 a simple spiral pattern only emerges at low 
aspect ratio. There is an apparent contradiction between 
this result and the stable spiral solutions of Eq. (I), 
which exist at any cylinder length L. However, the 
greater L, the less stable the spiral becomes, because the 
least stable perturbation decays as cxp( — Dn2/L2)t. We 
conjecture that for large aspect ratio the spiral becomes 
unstable against a secondary instability, not included in 
the phase dynamics approach, and which involves cou- 
pling with complex secondary flow.14 This conjecture is 
reinforced by the fact that the typical correlation length 
for a broken turbulent spiral is of the order of the 
cylinder diameter, which also characterizes the large 
scale flows. 
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Abstract. We present observations and measurements of a non-uniform pitch of the turbulent spiral in long 

geometries and discuss its dependence on boundary conditions at the cylinder ends, the helicity of the spiral, 

and the sense of rotation of the outer cylinder. We attempt to describe these results within the framework of 
phase dynamics which is applied here for the first time -we believe- to a structure with sustained microscale 

turbulence. We also discus» the influence of secondary flow on the ajimuthal and axial width of the spiral 
and suggest that the small scale turbulence consists of propagating finite amplitude nonlinear waves. 

Spiral turbulence consists of laminar and turbulent regions in Taylor-Couette flow which coexist 

to form a spiral (see Figure la). It occurs in the coaxial cylinder system when the outer cylinder 

rotates rapidly while the inner cylinder rotates in the opposite sense at a lower rate (large | - R„\ 

and a comparatively low Ä,, where Ri (Ä0) is the inner (outer) cylinder Reynolds number based on 
the gap between the cylinders, d, and the cylinder velocity [Andereck et al, 1986]). Spiral turbulence 

is particularly interesting because it mixes small scale (or microscale) turbulence and a well ordered 
structure at large scales, i.e. it is a coherent turbulent structure. Furthermore, this structure occurs in 
a confined system, allowing the study of turbulence without many of the difficulties found in open flow 

systems. The observation that the pitch varies along the axis fits well into a phase dynamics approach, 

which to our knowledge is here applied for the first time to a situation with sustained microscale 

turbulence. This simplified approach is in the spirit of Feynman [Feynman, 1964] "to find the qualitative 
content of the Navier-Stokes equations." We also show that the finite azimuthal width [Coles, 1965] [Van 

Atta, 1966] of the turbulent spiral is a result of the subcritical character of the flow and the bounded 

azimuthal geometry of the Taylor-Couette system. 

The apparatus used here has been described elsewhere [Baxter and Andereck, 1986] [Hegseth et al, 

1989]. We have performed perturbation experiments in the hysteretic regime in which a small amount of 

fluid is quickly injected through a small hole into laminar Couette flow. The initial axial and azimuthal 
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velocities of the spreading of the turbulent front were then determined [H et al, 1989). We have also 

made space-time diagrams of the spiral [Mutabazi et al, 1990). The light reflected from the visualized 

flow was focused onto an axially oriented line of 1024 pixels to be digitized once every 0.14 seconds. 

TIME 

Figure 1 

a) Spiral turbulence with T = 73, R0 = -3000, Ä, = 950, and outer cylinder rotating clockwise viewed 

from above. The turbulent band always turns in the direction of rotation of the outer cylinder. The 

boundaries on the top and bottom are rigid and the spiral appears to be traveling upward, b) Space-time 

diagram of spiral turbulence for the same configuration and parameters as in Figure la. Time is scaled 

by the outer cylinder rotation period and the axial position, Z, is scaled by the gap, d. The emitting 

side is at the bottom (axial position =0) and the absorbing side is at the top (axial position «76). 

The laminar flow to spiral turbulence transition is characterized by large hysteretic effects [C, 1965) 

[A et al, 1986), which implies that this transition is a subcritical bifurcation. Subcritical bifurcations in 

flows with infinite domains can lead to either expanding or contracting turbulent domains in laminar 

flow |Pomeau, 1986). This argument requires the existence of a potential functional in which there 

are at least two minima corresponding to a metastable (a local minimum but not a global minimum) 

and a stable state (ihe global minimum).  The existence of such a potential functional is, however, an 
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uncommon occurrence in fluid dynamics. The case of spiral turbulence, as seen in the laboratory frame 

of reference, shows that this analysis does not hold since we have both an expanding turbulent domain 

at the front face of the spiral and a contracting turbulent domain at the rear face. 

Coles and Van Atta [Coles and Van Atta, 1966] measured the 6 components of Reynolds stress as a 

function of the azimuth in the rest frame of the spiral at the mean radius. They found four components 

of Reynolds stress that are zero in the laminar region and increase to their maximum values in the center 

of the turbulent region. The other two components of Reynolds stress are negligibly small. This periodic 

variation in the Reynolds stress produces a periodic forcing on the mean How. This suggests that a large 

scale Poiseuille flow in the laminar region is generated by the change in Reynolds stress in the turbulent 

region. A similar backflow generating process in weakly inclined supercritical Taylor vortices has been 

explicitly worked out by Hall [Hall, 1984]. Hall, who completed previous work [Tabeling, 1983] [Brand 

and Cross, 1983] on amplitude equations, found that the backflow is proportional to an integral over 

the azimuthal angle involving the square of the amplitude, which itself is proportional to the Reynolds 

stress. The theory for the subcritical case has not yet been worked out, but, the same basic mechanism is 

probably at work, and this allows for a qualitative understanding. The backflow counteracts the velocity 

of expansion of the turbulence until the latter stops, i.e., the backflow generated by the Reynolds stress 

slows down the mean flow until a transition to laminar flow occurs at the rear face. The turbulence 

generates a backflow which acts on the turbulence limiting its growth. Similar feedback effects have 

been found [Thual and Fauve, 1988] in subcritical transitions to nonlinear traveling waves using a fifth 

order Ginzburg-Landau equation. Thual and Fauve found that when a potential functional exists (which 

is the case when all the coefficients in this Ginzburg-Landau equation are real) the stable state would 

expand at the expense of the metastable state. In the case where a potential functional does not exist 

(when the third order and the fifth order coefficients are complex) they found a localized structure, i.e. 

the nonlinear traveling wave solution and the null solution coexist in spatially separated regions with a 

stationary interface separating the two. Other studies of the subcritical bifurcations in the Ginzburg- 

Landau equation show simular behavior [Thual and Fauve, 1990] [Van Saarloos and Hohenberg, 1990] 

[Hakim et al, 1990]. The turbulent flow in spiral turbulence, as seen in its rest frame, is such a localized 

structure which occurs after a subcritical transition. Thual and Fauve reasoned that the localization 

was due to the amplitude-dependence of the wave frequency (which is a general property of nonlinear 

waves). The spatial shape of an amplitude envelope of a pulse of waves affects the frequencies of the 

waves in the pulse which in turn affects the pulse's shape. This feedback between the pulse's shape 

and wave frequencies works to limit the growth of the pulse. Davey et al [Davey et al, 1974] studied 

weakly nonlinear three dimensional disturbances in Poiseuille flow and found that spatial variations in 

the amplitude of these disturbances generate pressure gradients. They found the lowest order Ginzburg- 

Landau equation for a special case. The induced pressure gradient, in this special case, is shown to 

contribute to the complex constant which couples the amplitude of the nonlinear wave solution to its 

frequency. This suggests that there may be a physical connection between the feedback mechanism of 

the backflow described above and the feedback mechanism of Thual and Fauve for localized structures 

in subcritical phenomena. 

We found stable spirals of both helicities in a wide range of Ra and R, at the lower aspect ratios 

T = 30 and a fixed upper surface (I\ the aspect ratio, is the radio of the cylinder length, L, to the gap, 

d). We found that the pitch stays constant at ~ 30° for these Ä„'s and Ä,'s. This, however, was not 

the case for larger aspect ratios, in fact, at T = 73 persistent spirals occurred only for R„ = -3000. 

At fto =    -8000 no large scale coherent structure was seen at any R,.   At this R0 there were local 
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spiral-like structures with the helicity changing sign over an axial distance of the order of the cylinder 
diameters. Because these spiral-like structures would not alway connect to make V-shaped structures, 

these turbulent patches formed a "broken" spiral pattern. Sometimes the turbulence would not form 

local spirals or V-shaped structures, just turbulent patches. 

Since we are interested in simple spirals we made measurements only at Ra = -3000 for large 
aspect ratios. We found that these spirals always have» pitch that varied with axial position as shown 

in Figure 1. The manner in which this variation occurred depended on the end boundary condition, the 
helicity of the spiral, and the sense of rotation of the spiral [H et al, 1989|. We found that the pitch is 
always lower near the end away from which the spiral appears to be moving. With a free upper surface 

the pitch varies in the same manner but the variation in the pitch is not as large and there are also 

differences in the average pitch [H et al, 1989]. 
We videotaped the azimuthal and axial expansions of a spot created at the midpoint of the cylinder 

(to prevent end conditions from affecting the front velocity) in the rest frame of the spiral. After the spot 
is generated by the perturbation it initially expands much faster (—2 times) in the azimuthal direction 
than in the axial direction [H et al, 1989). The turbulent spot stops its azimuthal expansion as soon as it 
is about as wide as half of the perimeter length. This is evidently the width at which there is sufficient 
backflow to stop the spot's growth (H et al, 1989). The spot, however, continues to grow along the 

cylinder axis for ~2 seconds, when it breaks into two spots separated axially. These two spots continue 

to propagate axially in the rest frame of the spiral, with their widths always remaining approximately 

that of the final spiral. At still later times these spots propagate both axially and azimuthally. They 

may also undergo further splitting and subsequent growth. The different pieces eventually connect in a 

complicated process and construct a spiral. The presence of axial propagation shows that the backflow 
has in fact a complex three-dimensional structure. This is consistent with the measurements of Coles 

and Van Atta [C iz. V, 1966] which show both a periodic axial mean flow and a periodic azimuthal 

mean flow of comparable magnitude in the rest frame of the spiral at the mean radius. This mean 

flow is tangential to the spiral at the leading edge and nearly normal to the spiral at the trailing edge 

with a stagnation point in the center of the turbulence. This shows that the Reynolds stress drives 
both a mean azimuthal and a mean axial flow. The axial backflow limits the growth of the spot axially 
just as the azimuthal backflow limits the growth of the spot azimuthally. The boundary conditions at 

the ends of the spiral change this configuration somewhat, i.e., the axial mean flow is zero at a rigid 

boundary and a free surface. Figures lb shows a space-time diagram corresponding to the picture in 

Figure la. The darker regions show the leading edge of the spiral and the changes in slope of these 

phase lines indicate changes in the axial speed of the spiral. The end effects must modify the periodicity 

of the axial component of the mean flow and this in turn may generate a larger scale mean flow. It 

has been found [Pocheau et al, 1987] that mean flows modify the wavelength of Rayleigh-Benard rolls 

and a similar mechanism may be working here to change the pitch. This suggests that a simple phase 
dynamics approach, similar to the one used for Rayleigh-Benard rolls, may be used here to describe the 

observed pitch of the turbulent spiral and its variations. 

We first introduce the real phase field f>(z, t), which is the mean azimuthal position of the periodic 
spiral at height z and time t. The quantity <p is a phase in the sense that a uniform shift of <p has no 

dynamical effect on the periodic turbulent spiral pattern because of the axisymmetry of Taylor-Couette 

flow. We assume that the phase equation has the same form as considered previously [P et al, 1987], 

[Brand, 1985] i.e. 

IP« + v<p, = D<p„. 
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Equation (1) has a family of solutions consisting of the base state (no phase variation) plus a phase 

variation, i.e. 
ip = -lit - z) + *(z) 2 

v 

where to is a constant of integration (which we would identify as the frequency of the spiral in its base 

state) and v is the apparent axial velocity of the spiral in the laboratory frame when there is no phase 

variation. Equation (1) expresses the fact that the spiral relaxes diffusively in its rest frame. *(z), the 

variation of the phase, and the boundary conditions, which apparently cause the phase variation, are 
considered below. The value of the pitch is undetermined, as is the wave number of the Rayleigh-Benard 

rolls in the phase equation [P et al, 1987].  Just as the roll wave number is allowed to vary within the 

Eckhaus stable band (P et al, 1987], the absolute value of the pitch should be allowed to vary within a 
stable pitch band. This can be taken into account [P et al, 1987] by introducing a pitch dependence in 

0(cf(l)). 
Because the phase can only be known to within an arbitrary constant it cannot be used as a 

boundary condition. However, as stated above, the pitch is undetermined and in fact the only boundary 
conditions compatible with phase invariance are ;, = a at one end (say z = 0) and »s, = /? at the other 

end (z = L). Parameters a and ß describe the local pitch which the boundary conditions impose, a 

and ß could, in principle, be computed within the framework of a complete amplitude equation. Cross 

[Cross, 1986) calculated similar coefficients in a different context. 

The general solution of equation (1) is 

<p(z,t) = -(if- z) +¥?0exp— z. 3 

Here v^o and w are determined by boundary conditions at z = 0 and z = L 

D        a - ß w v 
»1- expi-L D      v D 

This describes how the pitch, <p„ varies continuously between a and /?. The experimental results as 

shown in Figure 1 show that a ^ ß. If a = ß, then from (4), ipo — 0 and one obtains the solution 

of constant pitch <p(z, t) = -a(vt — z). Equation (1) is invariant under the symmetry (*~ I*) which 
relates two possible spirals of opposite helicity. This symmetry operation also interchanges boundary 

conditions and therefore a spiral that in one helicity is compressed at the bottom and expanded at the 
top, shows the opposite behavior in the other helicity. These features are evident in the experimental 
data [H et al, 1989]. However, in the case when the top interface is a free surface and the bottom 

one rigid the above symmetry is broken and there is no reason based on symmetry for the two spirals 

of opposite helicity to be related. For the free-rigid case, this is what the data shows [H et al, 1989]. 
The data also shows that when the spiral appears :o move upward the pitch is relatively insensitive to 

whether the upper surface is rigid or free (H et al. 1989'. 
We have argued that the large scale spiral structure is a result of the backflow limiting the growth 

of the turbulence in the axial and azimuthal directions. In the perturbation experiment we observed that 
the spot alway split into two parts, one moving upwards, one downwards. This splitting and subsequent 

propagation suggests that the two spots consist of progressive finite amplitude waves moving axially, 

in the rest frame of the spiral, in either direction. In other words, the initial spot which is made 

of up moving and down moving waves splits into two spots, one consisting primarily of up moving 

waves and the other consisting primarily of down moving waves.  This separation of the two types of 

EUROPEAN JOURNAL OF MECHANICS. B FLUIDS. VOL   10   N   I  - SI PPL .   I W 1 

A-48 



226 > HEGSETH et al. 

waves corresponds to a spontaneous axial symmetry breaking. The final spiral which forms after a few 

minutes consists primarily of either up moving or down moving waves, which accounts for the existence 

of spirals of either helicity. As the fluid outside the spiral is linearly stable against these waves, they only 

propagate within the spiral boundaries, being emitted at one side and absorbed at the other. This view 

is consistent with the observed asymmetry between leading and trailing edges of the spiral azimuthal 

profile [V, 1966]. Consequently, waves are emitted at one end of the spiral and absorbed at the other, 
which leads to a being different from 0. A full picture would need an extension of previous results 

[P, 1986] to complex amplitudes of progressive waves. Figure lb illustrate the differences between the 

emitting side and the absorbing side. The difference is most pronounced when the free upper surface is 

an emitter [Hegseth, 1990]. 
In conclusion, we found that the pitch of the spiral is lower near the end away from which the 

spiral appears to be moving. Phase dynamics, for periodic structures with the symmetry of the spiral, 

gives a simple description of this pitch variation. We have visualized the initial spreading of the pattern 
and made space-time diagrams which, together with previous results, have given us a physical picture 
of the spiral. The Reynolds stress in the turbulence generates an azimuthal and axial backflow which 

limits the azimuthal and axial extent of the turbulence accounting for the spiral shape. The internal 

structure of the turbulence is evidently made of progressive finite amplitude waves that propagate either 

up or down along the axis with one end of the spiral being the emitter of the waves (the end with the 

compressed pitch) and the other end being the absorber of the waves (the end with expanded pitch). 
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Flow between two horizontal coaxial cylinders with a partially filled gap is subject to several 
types of centrifugal instabilities which lead to the formation of a variety of spatial patterns. An ex- 
perimental investigation has shown that there are five distinct branches of primary instabilities 
occurring in the system and that four codimension-2 points are easily reached. Theoretical predic- 
tions are in qualitative agreement with the observations. 

I. INTRODUCTION 

The behavior of systems far from equilibrium has been 
the subject of intense investigation over the last several' 
years. Of particular interest has been the manner in 
which spatial patterns arise. Pattern formation may be 
driven by a wide variety of mechanisms, including tem- 
perature gradients, concentration gradients, and centrifu- 
gal effects. Centrifugal instabilities1'2 occur in flow with 
curved streamlines, and they play an important role in 
many problems of practical importance. Two of the best 
known examples are the Taylor-Couette instabilities, 
which occur in the flow between two concentric rotating 
cylinders, and the Taylor-Gortler instabilities, which 
occur in the boundary layer on a concave wall. The 
Taylor-Couette and Taylor-Gortler instabilities have been 
extensively investigated both theoretically and experi- 
mentally (see Refs. 3-5 and references therein). Howev- 
er, a third class, the Dean instabilities,6 which occur in 
the presence of a pressure gradient along a curved chan- 
nel (Poiseuille flow), has received much less attention. 

Here, we present a simple system in which it is possible 
to realize the main centrifugal instabilities by an ap- 
propriate choice of control parameters. We consider two 
horizontal coaxial cylinders of radii r, and r0, which ro- 
tate independently with angular velocities fi, and fl0 for 
the inner and the outer cylinder, respectively. When the 
gap between the cylinders is completely filled with fluid, 
we have the classical Taylor-Couette problem. When the 
gap is partially filled and both cylinders rotate there ex- 
ists a combination of Taylor-Couette flow (caused by the 
differential rotation of the cylinders) and Poiseuille flow 
(caused by the backfiow induced by the presence of the 
horizontal free surfaces). As the system control parame- 
ters are varied, the base flow instabilities will change 
from those associated with Taylor-Couette to those asso- 
ciated with Dean. Under some conditions one might ex- 
pect to see flow patterns that result from competition be- 
tween instabilities. In other cases boundary layers on the 

curved surfaces may give rise to Taylor-Gortler instabili- 
ties.7 We will not discuss the last any further since 
boundary layer instabilities are apparently not dominant 
for the range of system parameters chosen. The relevant 
control parameters are the ratio of angular velocities 
H = il0/(li and the Taylor number. 

In Sec. II we will summarize the few related experi- 
mental and theoretical results which have been reported 
so far. In Sec. Ill we describe our experimental pro- 
cedure and in Sec. IV we report the results obtained. Sec- 
tion V is a comparison of the experimental results with 
the present theory. Finally, we will conclude with sug- 
gested directions for future work. 

II. PREVIOUS WORK 

The flow between two horizontal coaxial cylinders with 
a partially filled gap was first investigated by Brewster 
and Nissan8 in 1958. They deduced approximate velocity 
fields for laminar flow with only the inner cylinder rotat- 
ing, and they measured the critical angular velocity and 
the wave number of the resulting rolls. In 1959, Brew- 
ster, Grosberg, and Nissan9 considered the critical condi- 
tions for the formation of vortices between the cylinders 
in three cases: when the gap is filled with fluid and the 
flow is caused by the rotation of the inner cylinder 
(Taylor-Couette problem), when the flow is produced by 
pumping around the annular space (Dean problem), and 
when the liquid is driven by the rotation of the inner 
cylinder and forced to reverse its flow at a free surface. 
Their results for the Dean problem were in satisfactory 
agreement with the theoretical values for the threshold of 
the instability and the wave number of the vortices. They 
considered also the combination of the pumping of fluid 
around the annular space and the rotation of the inner 
cylinder. They obtained the interesting result that, in the 
neighborhood of a particular value of the ratio of the 
pumping flow rate to the rotation flow rate, the critical 
value of the control parameter has an abrupt change, and 
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the wavelength of the vortices has a discontinuity. The 
competition between the destabilization of the Couette 
and Poiseuille layers in the basic flow was invoked to ex- 
plain this anomalous behavior. 

DiPrima,10 using a Galerkin method, calculated the 
stability diagram for the combined Couette-Poiseuille 
problem and introduced a parameter k which measures 
the relative importance of the pumping flow compared to 
the flow driven by the rotation of the inner cylinder. He 
found that the neutral stability curve (using the principle 
of exchange of stabilities, which assumes that the instabil- 
ity that occurs is stationary) exhibits a discontinuity for 
X = kc = —3.667. Hughes and Reid" found, by numeri- 
cally integrating the stability equations, that, in the vicin- 
ity of ^c, the marginal stability curve presents two mini- 
ma with different values of wave numbers. Raney and 
Chang12 relaxed the restrictions of the principle of ex- 
change of stabilities and found that, in the vicinity of Xc, 
the marginal stability curve consisted of two stationary 
loops connected by an oscillatory branch at the absolute 
minimum of the control parameter. They came to the 
conclusion that in the neighborhood of Xc, an oscillatory 
instability might occur. No experimental verification of 
this result has been reported so far, perhaps because of 
the difficulty of realizing a well-controlled flow with 
external pumping. 

Mutabazi, Peerhossaini, and Wesfreid7 have reported 
experimental results for the case of a partially filled gap 
with only the inner cylinder rotating. They emphasized 
the oscillatory character of the observed structures and 
found a lower value of the threshold of instability than 
that claimed by Brewster and Nissan.8 In another paper 
Mutabazi et a/.,13 describe the quantitative characteris- 
tics of the oscillatory structures. Recently, Mutabazi, 
Normand, Peerhossaini, and Wesfreid14 have solved the 
linear stability problem for axisymmetric perturbations in 
the flow between two co-rotating cylinders with a partial- 
ly filled gap. They found that at the instability threshold 
in such a system it is possible to detect oscillatory or sta- 
tionary rolls depending on the ratio of the angular veloci- 
ties fx. The intersection points (codimension-2 points) of 
the oscillatory and stationary branches in the diagram 
(fi, Tc), where Tc is the critical value of the Taylor num- 
ber considered as the control parameter of the flow, were 
predicted to be experimentally accessible. We report here 
the results of an initial test of these predictions. 

III. EXPERIMENTAL PARAMETERS 
AND PROCEDURES 

The system considered in our experiment has been pre- 
viously used in the investigation of Taylor-Couette insta- 
bilities and is described in Baxter and Andereck.15 It 
consists of two horizontal coaxial cylinders, the inner one 
made of black Delrin plastic (radius r, =5.262 cm) and 
the outer one made of polished Plexiglas (radius 
r0 = 5.965 cm). So the radius ratio 77=0.882 and the gap 
is given by d = r„ — r, =0.703 cm. Teflon rings attached 
to the outer cylinder define the left and right boundaries 
for the liquid and produce an aspect ratio (working space 
length/gap) f = 68.  The cylinders were driven by Com- 

pumotor stepping motors with a rotation-rate resolution 
of 0.001 Hz. The angular velocities H, and Q0 of the 
inner and outer cylinders are scaled in terms of Reynolds 
numbers Ä,=n,r,d/v and R0=(l0r0d/v, where v is the 
kinematic viscosity of the working fluid. As shown in 
Fig. 1, the gap is filled only about } full with distilled wa- 
ter to avoid communication between the two sides of the 
system. The rotation of the cylinders typically induces 
no significant film on the walls. The experiments were 
performed in a controlled environment room; the fluid 
temperature varied by no more than 0.1 °C. Visualization 
of the flow states has been accomplished with a mixture 
of 1% by volume Kalliroscope AQ1000 in water. Inter- 
pretation of structures observed in the flow with polymer- 
ic flakes is based on the following: a dark area indicates 
flow along the observer's line of sight, while a light area 
indicates flow perpendicular to the line of sight. Howev- 
er, the asymmetry between the radial inflow and outflow 
boundaries can produce confusion between the wave- 
length and roll size of patterns if one boundary is much 
less distinct than the other. 

Data acquisition involved two techniques. Flow fre- 
quencies were determined from a single point time series 
obtained with laser light reflected off the Kalliroscope 
flakes onto a photodiode detector. The resulting signal 
was digitized for processing with a fast Fourier transform 
(FFT) routine. Spatial data were obtained by eye and by 
using a 28-85-mm variable focal length lens to form an 
image of the visualized flow on a 1024-pixel charge- 
coupled device (CCD) linear array interfaced through 
CAMAC to the computer. The line of 1024 pixels is 
oriented parallel to the cylinder axis. The output consists 
of intensity maxima and minima which correspond to the 
centers of the rolls and inflow and outflow boundaries, re- 
spectively. Analysis of the intensity plots yields the vor- 
tex sizes and hence the wavelength of the structure. 

FIG. 1. Schematic cross section of the apparatus. The "front 
face" is defined to mean that the observer sees the inner cylinder 
rotating upward as shown. The outer cylinder can rotate in ei- 
ther direction. Qualitative pictures of the flow near the free sur- 
faces are shown, along with the fully developed velocity profile 
away from these surfaces. 
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IV. RESULTS 

The transitions from unperturbed flow to the various 
critical states are summarized in Fig. 2. The observations 
were made from the front face (as defined in Fig. 1), while 
the rear face was viewed simultaneously, when needed, by 
a video camera and monitor. The system control param- 
eters are the Reynolds numbers Rt and R0 (defined 
above), respectively, for the inner and the outer cylinders 

[the base flow may also be specified by the angular veloci- 
ties ratio n and the Taylor number defined as 
7"=(n,r,<//v)(d/r, ),1/2 but the first pair of parameters 
has the advantage of being more easily controlled in an 
experiment]. For our experiments the two sets of param- 
eters are related as follows: /x = 0.882/?0/Ä, and 
T =0.366*, (or R,=2.7367 and R0 = 3. \02fiT). In 
presenting our results we will scale wavelengths by d, ve- 
locities by v/d, and frequencies by v/d2. 
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FIG. 2. (a) Diagram of primary flow transitions in the (R0,R,) space, (b) Diagram of primary flow transitions in the (fJ.,T) space. 
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A. Base flow 

The fully developed base flow between two infinite hor- 
izontal coaxial cylinders with a partially filled gap is az- 
imuthal (except in the neighborhood of the free surfaces) 
if the entrance angle 9e is small compared to the filling 
angle öy( =4;r/3 for our experiment). The entrance an- 
gle is given, for ju = 0, by13 6e=Cl,d2/97rv = 2f,/9w, 
where /, is the scaled frequency of rotation of the inner 
cylinder.     Then    the    condition    for    assuming    fully 

developed azimuthal base flow is /, «f0=9-n-df/2. For 
our experimental case f0 =67.1. We have worked in the 
range0.5</( < 15.5, with fc<7.2 for all the transitions. 
At these rotation frequencies we can consider our base 
flow to be essentially azimuthal. The azimuthal velocity 
profile is given by16 V(r)= Ar \nr +Br +C/r, where 
A ={\/2pv)dP/d6 is related to the azimuthal pressure 
gradient and the coefficients B and C are obtained from 
the boundary conditions on the cylindrical walls. The 
flow rate conservation across a given radial section 
(6=constant plane) gives the value of A. We get 

A = 
2[ 2( ft, - H0 )r

2r2M r0 /r,) + (il0 r; - Cl, r;)( r] - rf) ] 

(r2
0-r})2-^yo[\n(r0/r^}- 

nor0
2-n,.r/2)-^(r0

2lnr0-r,V.) 

r2-rl 

C = 
[n,-no + ^ln(r0/r,.)]r,2r0

2 2-2 

r2-r2 

(1) 

(2) 

(3) 

The coefficient A in V(r) is zero in the classical Couette 
problem (fully filled gap). The velocity profile is a super- 
position of the Couette flow imposed by the rotation and 
the Poiseuille flow in a curved channel produced by the 
azimuthal pressure gradient. This superposition is well 
seen in the small-gap approximation. For the purposes of 
our experiment, we will use the small-gap approximation 
(77 —«-1) and introduce a characteristic velocity v/d to ob- 
tain the quadratic trinomial in x [with x =(r —r, )/d\. 

V(x) = l(R,+R0)x
2-2(2R,+R0)x +R, (4) 

This profile possesses up to two nodal surfaces (surfaces 
of zero azimuthal velocity) between the two cylinders sit- 
uated at 

x = 
2R,+R0±VR

2
 + RIR0+R

2 

3(R,+R0) 
(5) 

Figure 3 gives the velocity profiles for different values of 
the parameters Ä, and R0. Examination of these base 
flows reveals the possibility for centrifugal instabilities. 
To a first approximation the centrifugally unstable re- 
gions will be those in which the inviscid Rayleigh circula- 
tion criterion (d/dr \£lr2\ <0) holds, as noted in the 
figure. The presence of viscosity modifies this simple pic- 
ture, but the basic instabilities remain. These have been 
examined numerically by Mutabazi et al. '* 

B. Stationary patterns 

For R0 in the ranges of -257--35 and 160-257, the 
base flow is typically unstable to formation of a pattern of 
time-independent vortices. (The behavior near R, =0 is 
rather different and will be discussed at length in Sec. 
IV E.)  They have no significant azimuthal variation, ex- 

cept very near the free surfaces, and are of uniform size 
along the cylinder, with a dimensionless wavelength of 
the vortex pairs (defined as X/d) of about 2.4 in the co- 
rotating case and approximately 2.45 in the counter- 
rotating flows [see Figs. 4(a) and 4(b)].  The patterns for 
- 257 <R0<- 175 and for 160 < R0 < 270 are clearly ob- 
served and therefore are most likely forming near the 
outer cylinder. The analysis of the approximate base flow 
profile   suggests   that   these   are   Dean   rolls.'4    For 
— 257 <Ä0 < — 170, Rayleigh's criterion applied to the 
profile of Fig. 3(a) shows that the potentially unstable lay- 
er in the gap is contained within the Poiseuille flow re- 
gion, which will therefore give rise to Dean rolls. For 
160<Ä0<270 numerical results14 show that the rolls 
should be confined to the outer unstable layer, which 
again is part of a Poiseuille flow region, indicating these 
are also Dean rolls. Slightly beyond the onset of the in- 
stability, subharmonics intervene, leading to rather com- 
plex patterns. 

For - 170 < R0 < — 35, the rolls are difficult to observe, 
being apparently localized near the inner cylinder, and 
they do not strengthen significantly as Ä, is increased. 
These are probably Taylor-Couette vortices [Fig. 4(c)] be- 
cause the destabilized layer near the inner cylinder has a 
velocity profile [see Fig. 3(c)] which is Couette-like rather 
than Poiseuille-like. The transition between these 
theoretical profiles occurs near the experimental 
codimension-2 point at /?, = 197 and Ä0 = 166. For R0 

from —175 to —170, the rolls appear first in the rear 
face. This branch has been explored in two ways, both by 
fixing R0 and changing Rjf and by fixing Ä, and changing 
R0, and the results were essentially the same. The Dean 
rolls and Taylor-Couette rolls are both unstable to time- 
dependent patterns (traveling inclined rolls; see Sec. IV B) 
when /?,- is increased for fixed R0, except, of course, for 
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FIG. 3. Base flow velocity distributions near instability thresholds (flow patterns arising from the base flow instabilities are indicat- 
ed in parentheses): (a) only outer cylinder rotating, (b) counter-rotating cylinders (Dean rolls), (c) counter-rotating cylinders 'Taylor- 
Couette rolls), (d) only inner cylinder rotating (traveling inclined rolls), (e) co-rotating cylinders (Dean rolls), (f) co-rotating cylinders 
(traveling inclined rolls). S and U indicate Rayleigh stable and unstable layers, respectively. The fluid velocities have been normal- 
ized to the outer cylind r vt locity in (a) and the inner cylinder velocity in (b)-(f). 

A-54 



38 PATTERN FORMATION IN THE FLOW BETWEEN TWO . 4757 

R0 from 150 to 200, in which case the base flow is re- 
gained before traveling rolls form. 

C. Time-dependent patterns 

Traveling  spirals  (or,  technically,  traveling inclined 
cells, since a complete spiral is not really possible owing 

to the presence of the free surfaces) [Fig. 4(c)] appear at 
threshold for R0 in the ranges —30-210 and 265-300. 
They form at an angle of about 20° with the vertical and 
propagate along the cylinder axis with a constant veloci- 
ty. The dimensionless roll propagation velocity, scaled 
by v/d, is approximately 29 (0.4 cm/sec).  Figure 5 shows 

(cj .      -    ..    _„   _ _.,,— ~      -;   ■_   - - —-,-i.  -   '-  ■     -'- 

A 
UimrmfjN ^^H '      ''^"V*'v   '•'"■•■.1 ZJ 

iff f f " * .* ' ' ' 

^Jffikriiiifca.Yif 

FIG. 4. States observed for different values of control parameters: (a) Dean rolls, R„ = 220, /?, = 195, (b) Taylor-Couette rolls, 
R„ = -\56, R,=252, (c) inclined traveling rolls. Ä„=70, R,=2i0, id) Dean rolls for only the outer cylinder rotating, R., = }2i). 
R. -0, (e) coexisting inclined and Dean rolls, Rn = -45, R, =265. 
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FIG. 5. The frequency a of traveling inclined rolls vs y. the ratio of the angular velocities of the two cylinders, a is the measured 
frequency in Hertz scaled by d:/v. The region between the two branches corresponds to the stationary patterns. The ends of the two 
branches correspond to the codimension-2 points. 

the frequency as a function of the angular velocities ratio 
/i. It is interesting that there is no preferred propagation 
direction for the rolls; they may move from either left to 
right or right to left, but the relationship of the tilt direc- 
tion to the direction of propagation is always the same. 
Occasionally there may be inclined rolls with opposite tilt 
and propagation direction existing simultaneously in 
different regions along the cylinder. Usually one will oc- 
cupy almost the entire length with the other confined 
near one end. Although in principle standing waves 
formed by counterpropagating rolls may exist we have 
not yet observed this effect. The inclined rolls become 
much weaker partway around the cylinder, with greatest 
strength near the front face. It is possible that the pres- 
ence of the free surfaces accounts for this by imposing an 
entrance length region on the fully developed Couette 
and Poiseuille profile.7 Above threshold the rolls become 
clearly visible all the way from the front to the back free 
surface, corresponding to a decrease of the entrance 
length. 

D. Laminar state-inclined rolls-laminar 
state-stationary patterns transition 

There are two bands of Rt, values (from 155 to 210 and 
from 257 to 300) for which the instability differs as Rt is 
increased. In the first band, when R, is increased from 
about 160, the instability sets in as stationary axisym- 
metric rolls, but at higher R, they disappear and the flow- 
becomes laminar, without any structures. At still higher 
values of Rt inclined rolls form. In the second band the 
instability sets in as a traveling pattern. Upon increasing 
R, the pattern disappears and the base laminar flow reap- 
pears. At still larger Rt stationary axisymmetric rolls 
form in the flow. The roll size is the same as that for the 
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stationary patterns for R0 in the range 160-257. It is in- 
teresting to notice that if we plot the phase diagram [Fig. 
2(a)] in terms of the parameters T and p [Fig. 2(b)], the 
transition, for fixed /J and increasing T, is directly from 
the base state to inclined rolls or to the stationary Dean 
rolls. 

E. Codimension-2 points 

The traveling inclined roll state and the stationary 
state branches intersect at three oscillatory-stationary 
codimension-2 points. Preliminary inspections of the 
neighborhoods of these points have proved quite interest- 
ing. There are often mixed states of stationary and trav- 
eling rolls. Sometimes the traveling rolls are near the 
right end and the stationary rolls are near the left end or 
vice versa), or the traveling rolls may coexist with the sta- 
tionary rolls in the same region [see Fig. 4(e)]. The Dean 
and Taylor-Couette branches intersect in another 
codimension-2 point (stationary-stationary). Near that 
point rolls which were clearly visible at the outer cylinder 
wall become less distinct as the unstable region develops 
near the inner cylinder wall. 

In all cases the system was brought to just beyond the 
instability threshold and then allowed to settle for many 
gap diffusion times d2/v. following which the process 
was repeated. It might be possible that these states near 
the codimension-2 points are transients: waiting for a 
very long time, the system may pass to a pure state like 
those prevailing further from the immediate neighbor- 
hood of the codimension-2 point, but this has not been es- 
tablished, owing to practical difficulties with Kalliroscope 
solution lifetime limits. Further work will be necessary 
to achieve a coherent picture of these complex flows. 
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F. Inner cylinder at rest, outer cylinder rotating 

When the inner cylinder is at rest and the outer 
cylinder is rotating, there is some difficulty in establishing 
the onset of the instability. End effects dominate the 
flow. Large spiral-like vortices propagating away from 
each end virtually fill the system. They are most prom- 
inent on the side with the outer cylinder moving upward. 
On the other side at R0=151 weak stationary Dean rolls 
form and coexist with the end-effect rolls. Increasing R0 

to 300 establishes Dean rolls on both sides of the system, 
and the end effects become less apparent [Fig. 4(d)]. It is 
then possible to decrease R0 to 272 and retain the ax- 
isymmetric state. After establishing Dean rolls 
throughout, one can then increase Ä, slowly and observe 
various transitions. Two cases arise: when the cylinders 
are counter-rotating, these rolls persist but become weak- 
er in the back face. For co-rotating cylinders, the Dean 
rolls are observed to be asymmetric, weaker in the front 
face than in the back, until Ä, ~ 12, at which point travel- 
ing inclined rolls appear in the front face. The transition 
between Dean rolls and inclined rolls in this region has 
not been thoroughly explored. 

V. DISCUSSION OF RESULTS 

The stationary states of the diagram (Ä0,/{,) may be 
understood at least qualitatively if one applies the Ray- 
leigh stability criterion to the base flow velocity profile. 
In fact, from Fig. 3, one sees that the velocity profile may 
be considered as a superposition of linear Couette and 
Poiseuille profiles.   Depending on the critical Reynolds 
number for the different sublayers, the onset of instability 
for the whole system will begin in that sublayer with the 
minimal critical value.  The inclined roll states might be 
understood as the result of the competition between the 
mechanisms   of   destabilization   of   the   Couette   and 
Poiseuille sublayers.  In fact, we see in Fig. 3 that the in- 
clined rolls exist for those values of Rt and R0 for which 
the base velocity field has two potentially unstable sub- 
layers, while the stationary states develop for the case 
when the base velocity profile has only one potentially 
unstable sublayer.  The Dean rolls which emerge for R0 

in the range 160-300 appear to be an exception to this 
and they may be seen as intermediate between the in- 
clined roll and laminar states.  It is also interesting to re- 
mark that the system is always linearly unstable with ei- 
ther the inner or the outer cylinder at rest, while for the 
classical Taylor-Couette system the flow is linearly stable 
when the inner cylinder is at rest. The result obtained for 
the case with only the inner cylinder rotating agrees with 
the results found previously and reported in Refs. 7 and 
13. 

The presence of an oscillatory branch in between two 
distinct stationary branches has been predicted,14 but the 
observed critical values were quite different from those 
calculated. In particular, the oscillatory branch was pre- 
dicted to exist between the codimension-2 points at 
fl0 = 142, /?,=483 and Ä0=216, Ä,=489. (Theoretical 
critical values have been omitted from Fig. 2 since they 
are quite large compared with the experimental values.) 

Several assumptions were made in developing the initial 
theory, among which are the small gap approximation, 
the infinite cylinder length, and the axisymmetric pertur- 
bations (even though the system itself breaks the azimu- 
thal symmetry). Nevertheless, the predicted frequency is 
of the same order as that observed in the experiment. 
For stationary states, axisymmetric perturbations may 
still suffice to describe the behavior far from the free sur- 
faces. However, the use of axisymmetric perturbations 
for the oscillatory states appears to cause more serious 
difficulties. In fact, in this case we observe nonaxisym- 
metric patterns with angular wave number m [from per- 
turbations in exp/(sf +qz+m6)] different from zero. 
An important feature in this kind of system is that nonin- 
teger values for m are allowed, in contrast to the classical 
Taylor-Couette case when propagating nonaxisymmetric 
structures arise. If we define 

2TT 
ro+ri 

tana 

dk (6) 

then we find that the experimental value for m is approxi- 
mately 14 for /x = 0, corresponding to an inclination angle 
a=19'and a wavelength X= 1.22 (0.86 cm). For/x=0.22 
the experimental value for m is 13.4. We note that the k 
we have used is equal to the distance along the axis be- 
tween successive dark boundaries.  We are so far unable 
to distinguish inflow from outflow boundaries owing to 
the weak nature of the flows, and this presents us with an 
ambiguity.   The observed boundaries in most cases are 
equally dark  (as determined visually and with  image 
analysis), which is indicative that they may be of the 
same type, i.e., all inflow or all outflow.  In a few cases a 
set of very weak dark lines can just be detected, apparent- 
ly revealing that the wavelength is only half that given by 
the strong dark lines.   We are led to the tentative con- 
clusion that either one boundary is much weaker than the 
other and is thus normally not visible, or that there may 
exist unobserved weak counter-rotating cells existing next 
to the inner cylinder.   This is a matter that will await 
resolution in future experiments.   It is possible that the 
value of m may change with both the values of Ä, and R0 

and the filling volume ratio.  Indeed, preliminary experi- 
ments17 have shown that m decreases slightly with a con- 
tinuous increase of the filling fraction, although the criti- 
cal Taylor number is unchanged.   The Ekman cells in- 
duced by the Teflon end rings have a nonaxisymmetric 
profile and will affect, as a perturbation, the bulk flow. 
This influence is probably more important near the line 
|U= —1   (where the velocity gradients are larger) and 
lower at the line /x=l.   The entry length near the free 
surfaces, caused by the growth of a boundary layer, may 
be affecting the inclined rolls since near threshold they 
are most prominent on only one side, but evidently this is 
not so important for the Dean or Taylor-Couette rolls. 

We emphasize that further transitions have been ob- 
served in the system for values of the parameters R, and 
R0 beyond the instability thresholds, but they have not 
yet been quantitatively characterized. 
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VI. CONCLUSION 

We have shown that the flow between two horizontal 
coaxial rotating cylinders with a partially filled gap is 
very rich in nonequilibrium patterns. We have found a 
variety of different structures extending over wide ranges 
of the external control parameters R0 and Rt. Five pri- 
mary instability branches and four codimension-2 points 
have been directly observed. Approximate characteris- 
tics of the states (threshold control parameter values, fre- 
quency of inclined rolls at threshold, and wavelengths/ 
have been determined. However, our results indicate the 
need for further, more extensive, investigations. Theoret- 
ically, account must be taken of nonaxisymmetric pertur- 
bations, a finite gap, and nonlinearities. The last is no 
doubt important in the vicinity of the codimension-2 
points, where mixed-mode patterns have been observed. 
It may also be important to explore the effect of radius 
ratio changes. Experimentally it would be desirable to es- 
tablish the details of the flows in the codimension-2 point 
neighborhoods,18 search for possible changes in tilt and 
propagation velocity of the inclined rolls as functions of 

R0 and Ä,,19 and explore the behavior of the various 
flows as the system is driven beyond threshold into chaot- 
ic or weakly turbulent states. The last is potentially quite 
interesting since this system breaks the rotational symme- 
try of the circular Couette flow, thus undoubtedly chang- 
ing the dynamics in a profound way, even for the flows 
bifurcating from the Taylor-like rolls. 
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Flow between two horizontal coaxial cylinders with a partially filled gap is investigated for the case 
when the primary instability forms a pattern of traveling inclined rolls which is simply periodic in space 
and time. Slightly above the onset, there is a second instability which results in a periodic modulation of 
the rolls with an axial wavelength of -—3 rolls and a lower frequency. Both the traveling inclined rolls 
and the — 3-roll-modulation pattern exhibit long-wavelength, low-frequency phase modulations and as- 
sociated defects. 

PACS numbers: 47.20.-k 

The transition to turbulence remains one of the major 
problems of nonlinear physics which is still not well un- 
derstood. In the last few years, considerable effort has 
been devoted to the problem of the formation of cellular 
patterns, and their subsequent evolution to disorder, in 
fluid systems far from equilibrium such as Rayleigh- 
Benard convection and Taylor-Couette flow, as well as 
many other hydrodynamic, mechanical, and physico- 
chemical systems.1'2 In such cases, the bifurcation from 
the base state occurs via a stationary or an oscillatory in- 
stability (Hopf bifurcation). Recently, attention has 
been drawn to systems in which the transition from the 
base state occurs via a Hopf bifurcation, in which case 
the transition to spatial-temporal complexity may be 
more accessible for experimental characterization and 
theoretical treatment. Such systems include convection 
in binary mixtures3 and in liquid crystals,4 the Taylor- 
Couette system with counter-rotating cylinders,5 the 
Taylor-Dean system,6 chemical reactions,7'8 and plastic 
deformation with negative-strain-rate sensitivity.9 

We report the first observation of an unusual transi- 
tion sequence in the behavior of a hydrodynamic system 
with well controlled centrifugal instabilities, the Taylor- 
Dean system. The system consists of flow between two 
horizontal coaxial rotating cylinders with a partially 
filled gap. The flow patterns observed depend on the 
inner- and outer-cylinder rotation speeds, which we re- 
scale as our dimensionless control parameters, the inner- 
and outer-cylinder Reynolds numbers /?, and R0. De- 
pending on the value of R0 selected, the flow evolves 
upon increasing /?, to either a stationary axisymmetric- 
roll pattern or a traveling-inclined-roll pattern (Hopf bi- 
furcation).6 We investigate here the behavior of the 
traveling-roll pattern when the outer cylinder is at rest 
and Ri is slowly increased. Just above the onset, a phase 
variation in the pattern produces a long-wavelength 
modulation and time-dependent pattern defects are gen- 

erated. At higher rotation speeds, the pattern undergoes 
an unusual periodic short-wavelength amplitude modula- 
tion with an envelope size of ~ 3 rolls. While investiga- 
tion of different extended one-dimensional systems with 
a Hopf bifurcation as the first transition has led to in- 
teresting results such as solitary-wave-like behavior10"12 

or isolated patches of traveling rolls,13*16 we know of no 
other system with traveling patterns at onset which un- 
dergoes such a short-wavelength modulation. The aim of 
this Letter is to present the main characteristics of this 
novel traveling pattern, and describe its evolution toward 
spatial-temporal complexity. 

The Taylor-Dean system may be understood (and dis- 
tinguished from the Taylor-Couette system) by observ- 
ing that the partial filling of the gap between the 
cylinders produces two horizontal surfaces. When the 
cylinders rotate they drive the fluid toward a free sur- 
face. To reverse the direction of the flow the free surface 
induces a pressure gradient along the azimuthal direction 
(Fig. 1). As a result, the flow sufficiently far away from 
the free surfaces can be regarded as a combination of 
Couette flow, from the rotation of the cylinders, and 
Poiseuille flow, due to the azimuthal pressure gradient. 
The traveling-roll pattern may then arise as a result of 
the competition between centrifugal instabilities of the 
Couette and Poiseuille components of the flow.n 

Our system consists of two horizontal coaxial cyl- 
inders, the inner cylinder made of black Delrin plastic 
with an outer radius r0 ""4.486 cm and the outer cylinder 
made of Duran glass with an inner radius r, "5.080 cm. 
The gap between the cylinders is </■"/■<, —r,—0.594 cm 
and the cylinders are independently driven as described 
elsewhere.6 The radius ratio n ""0.883 is large enough 
for the small-gap approximation to be reasonable. 
Teflon rings are attached to the inner surface of the 
outer cylinder a distance £""53.40 cm apart, giving an 
aspect ratio T-I/rf-90.  The fluid is water with 1% 
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FIG. I. Sketch of the experimental geometry: Corotating 
cylinders with a partially filled gap. The front face is defined 
to be the one in which the inner cylinder is rotating upward. 

Kalliroscope AQ1000 for visualization. We have fixed 
the filling-level fraction n—0f/2it at 0.75.6 (The instabil- 
ity threshold depends only weakly on n. For n e [0.5, 
0.8] the variation of /?,<■ is within the experimental pre- 
cision (=1%).) 

We define inner- and outer-cylinder Reynolds numbers 
as follows: /?,—2;r/>,<//v and R0—2nf0r0dlv, respec- 
tively, where /)• and f0 are the inner- and outer-cylinder 
rotation frequencies. The dimensionless control parame- 
ter is ( — (R,—Rlc)/Ric, where Ric is the inner-cylinder 
Reynolds number at onset of the traveling inclined rolls 
for a given R0. The flow-pattern frequencies are scaled 
with the inverse of the radial diffusion time xr—d2/v 
as 36 s, the wavelengths are scaled by the gap size d, and 
the velocities are scaled by the radial diffusion velocity 
v/d. 

Frequency measurements at a single position in the 
flow have been made by the light-reflectance technique 
described elsewhere.6 Spatial information is obtained 
using a 28-35-mm variable-focal-length lens to image 
the flow pattern onto a 1024-pixel charge-coupled-device 
(CCD) linear array. The array is controlled by a 
CAMAC module, which also serves as the data gateway 
to our PDP-11 computer. This system is able to continu- 
ously process up to one frame every 0.07 s. The output 
of the CCD camera gives the instantaneous reflected 
light intensity along the axis of the cylinders, the maxi- 
ma corresponding to roll centers and the minima corre- 
sponding to inflow and outflow boundaries. Space-time 
diagrams are then produced by displaying intensity 
versus axial position plots at regular intervals along a 
time axis. We have also used a high-intensity white-light 
source to illuminate a thin cross section of the flow to 
visualize the internal processes in the structures. 

The initial instability to traveling rolls is, within our 

1730 

experimental limits, a supercritical Hopf bifurcation. 
The intensity of the rolls decreases along the azimuth 
such that they are weaker in the rear face than in the 
front face. This may be connected to the presence of a 
horizontal recirculation roll at the front free surface. 
The rolls are inclined ~20° from the vertical (Fig. 2). 
The wavelength of the rolls along the cylinders' axis is 
X —1.416. At onset the rolls have no preferred direction 
and may move either left or right. The direction of prop- 
agation is the same as the roll inclination direction. 
Light sheet visualization through the gap shows that the 
rolls exist near the outer cylinder. Above threshold both 
right- and left-traveling rolls may exist separated by a 
vertical (noninclined) defect line. The defect line is not 
necessarily in the middle of the cylinder axis; in fact, it 
moves in an erratic fashion with a velocity of about 50 
times less than that of the rolls. Such defect lines are in- 
herent to traveling-wave patterns.18 

We have measured the frequencies of the traveling 
rolls (from power spectra) as a function of /?,, as shown 
in Fig. 3. Near the onset, for a fixed R0, the fundamen- 
tal frequency / of the traveling rolls increases almost 
linearly with /?,-. Measurements of the frequency at 
different points along the axis show that for e = 0.013, 
and above, there is a local frequency of the pattern. This 
can also be seen in Fig. 2 where the phase lines of the 
rolls are curved. Close to onset, after either a left- or 
right-traveling roll pattern has grown to a length of ~30 
rolls, a long-wavelength modulation appears which gen- 
erates this phase variation. The wavelength of this 
modulation decreases from ~30 to —10 rolls as /?, in- 
creases. For e 6 [0.02,0.1] the frequency and roll- 
velocity variation becomes strong. High-velocity rolls 
occasionally collide with low-velocity rolls, resulting in 
the loss of a roll. The collision gives rise to a damped 
modulation moving in a direction opposite to the travel- 
ing rolls. Roll creation events have also been observed 
[as can be deduced from Fig. 2(a)]. Similar roll creation 
and destruction events have been observed in binary-fluid 
convection14 and in electrohydrodynamic systems. '9 

Increasing /?,-, the flow undergoes a second instability 
which results in a short-wavelength modulation of the 
traveling waves [Fig. 2(b)]. The onset is nonhysteretic, 
within our experimental precision of —1%. It manifests 
itself as a roll-intensity modulation with a nonsymmetric 
envelope of wavelength A~4.I1 and lower frequency/: 
of about 0.7 for R0 *"0. The size of an individual roll 
changes as it travels through the modulation envelope. 
This — 3-roll (short-wavelength) modulation appears for 
-45</?0<45 with a threshold varying as shown in 
Fig. 4. The modulation envelope moves with a velocity 
depending on the value of R0. 

The short-wavelength modulations produce distortions 
of each roll along its axis [Fig. 2(b)]. This suggests that 
the short-wavelength modulation may be analogous to 
the wavy spirals in the counter-rotating Taylor-Couette 
system.5   Given the axial velocities in the data of Fig. 
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FIG. 2. Photographs of the traveling-roll patterns viewed from the front face (the top of each view being a free horizontal sur- 
face) and their space-time diagrams: (a) traveling-inclined-roll pattern near threshold at R,-263 and R0 -0. (b) Short- 
wavelength (— 3-roll) -modulation pattern at Ä.--303 and R„ -0. 

2(b), and the 20° inclination angle, there should be =2.9 azimuthal waves.  We observe —2 waves in the front face 
while the third may remain unseen because of the decreasing intensity of the rolls along the azimuth. 

We measured the time-averaged spatial intensity-intensity correlation function of the rolls along the axis for R0 =0. 
Time averaging of individual spatial autocorrelations was done over a time of =40rr and had the effect of removing the 

/ S — 

2 75 

FIG. 3. Fundamental and secondary frequencies as func- 
tions of R,: fundamental frequency for Ru —0 (x ), for R0 —39 
(* ), and the secondary frequency for R0 —0 ( +). 
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FIG. 4. Phase diagram (/?„,/?,) for the threshold of the 
inclined-traveling-roll pattern, and the short-wavelength- 
modulation pattern. The solid lines are guides to the eye. 
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FIG. 5. The —3-roll pattern at R, -308, /?„ -0. The trav- 
eling rolls are separated by propagating envelopes which exhib- 
it phase modulations and defects. 

long-range correlation. Before the onset of the short- 
wavelength modulation, the envelope of this correlation 
function decreases smoothly within an exponential en- 
velope with a characteristic length of about 2.6. After 
the short-wavelength modulation appears, the correlation 
remains strong only at distances of 3 rolls. This reflects 
the varying roll size and apparent strength within a 
modulation wavelength. This phenomenon can be con- 
sidered as the generation of traveling patches (triplets) 
periodic in space and in time separated by periodic lami- 
narlike zones. As in the case of the initial traveling-roll 
pattern, the roll-modulated pattern may exhibit spa- 
tiotemporal defects (Fig. 5). At these and higher R, 
values the correlation function drops rapidly to zero 
beyond one roll wavelength. 

To summarize, for a large-aspect-ratio Taylor-Dean 
system, the traveling inclined rolls observed at the onset 
of instability, undergo, after the onset of a long-wave- 
length modulation associated with defects, a novel short- 
wavelength modulation with an axial wavelength of —3 
rolls. This modulation may be generated either by com- 
peting instabilities in different layers or by a wavy insta- 
bility of the rolls. This short-wavelength-modulation 
pattern strongly distorts individual rolls and exhibits a 
long-wavelength modulation associated with defects. 
This transition to the — 3-roll-modulation pattern is not 
far from the onset of the primary instability, making this 
system a good candidate for investigating the transition 
to weakly turbulent states. 
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Transition from time-dependent to stationary flow patterns in the Taylor-Dean system 

Innocent Mutabazi and C. David Andereck 
Department of Physics. Ohio State University, 174 W 18th Avenue, Columbus, Ohio 43210 

(Received 21 June 1991) 

The flow between two horizontal coaxial cylinders with a partially filled gap. the Taylor-Dean sys- 
tem, is investigated for the case in which the outer cylinder rotates while the inner cylinder remains ai 
rest. The initial instability is to a mixed state of both traveling inclined rolls and laminar base flow 
At a larger rotation rate, the entire flow becomes time dependent. At a still larger rotation rate, the 
flow undergoes a subcritical transition to a stationary roll pattern, a process previously observed only in 
binary fluid mixtures. 

PACS number(s):  47.20.-k 

Studies of the routes to turbulence in diverse physical 
systems far from thermodynamic equilibrium have shown 
that the transition from the base state usually is to a state 
with a pattern that is periodic in space and/or in time [ll. 
The classical prototypes of such systems are Rayleigh- 
Benard convection and Taylor-Couette flow. Upon in- 
creasing the relevant control parameter, temporal and 
spatial frequencies emerge that correspond to various 
state transitions, until eventually the system becomes 
chaotic, as indicated by the presence of broad components 
in the Fourier spectrum. Typically, once time dependence 
begins in such systems, it persists and becomes more com- 
plex until finally the state may be characterized as tur- 
bulent. However, exceptions to this common scenario are 
found in some systems. For example, Waiden et ai 12] 
and later Moses and Steinberg [3] have observed thermal- 
ly induced stationary overturning convection in binary 
fluid mixtures in a rectangular cell. In this case there is a 
subcritical transition from a traveling-waves state (first 
instability after the conducting state) to a stationary pat- 
tern (secondary instability) with an increase in the control 
parameter, the Rayleigh number. A similar phenomenon 
has been observed using an annular container [4]. The 
circular cell geometry has not changed the essential 
phenomenon but has suppressed the formerly observed 
hysteresis. 

We report here observations of a transition from a trav- 
eling roll state to a stationary roll state in a single- 
component Newtonian fluid. The fluid is contained in a 
modified version of the Taylor-Couette geometry with 
broken rotational symmetry. Specifically, the system con- 
sists of flow between two horizontal coaxial cylinders with 
a partially filled gap, the so-called Taylor-Dean system 
[5] (see Fig. 1). In the case discussed here, only the outer 
cylinder rotates, with angular velocity n. The onset of in- 
stability is characterized by a state of three regions: in- 
clined rolls traveling to the right (region with pattern am- 
plitude A^O), laminar flow (A =0), and inclined rolls 
traveling to the left (A^O). This transition is subcritical. 
For higher values of the control parameter, the time 
dependence disappears from the flow and the pattern be- 
comes stationary and axisymmetric. As the Taylor-Dean 
system is purely hydrodynamic, this transition has a quali- 
tatively different origin from the one that is observed in 

thermal convection in binary mixtures for negative values 
of the separation ratio [2-4]. 

It has been emphasized previously [5] that when only 
the outer cylinder rotates. Dean rolls should occur. They 
result from a centrifugal instability in curved Poiseuille 
channel flow with a constant longitudinal pressure gra- 
dient. Dean rolls have recently drawn attention because 
of their importance in practical systems such as channel 

(a) 
rearcuUDOn zone rrcirojljcoi 

r>uli flow Lone 

(b) 

3 ^ :      ; 
£ I if V) — y. 

FIG. I. Sketch of the flow geometry. The gravitational force 
is downward in this view, perpendicular to the axis (a) The 
base flow consists of the azimuthal bulk flow and of the two- 
dimensional velocity field in the recirculation zone, (b) The 
bulk base-flow-velocity profile and Rayleigh's circulation cri- 
terion: The unstable layer is sandwiched between two stable 
layers. The pure Poiseuille flow has one solid boundary at v =0 
and one nonrigid boundary at x ~ j . 
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flows and pipe or duct flows [6l. The curved Poiseuille 
channel flow has been modeled sometimes by the flow be- 
tween two coaxial cylindrical stationary surfaces under an 
external azimuthal pressure gradient. In that case, the 
base-flow state can be calculated and both the linear [7,8] 
and weakly nonlinear stability analyses [9,10] can be car- 
ried out. In the present case, the rotation and the free sur- 
faces resulting from the partial filling of the system force 
a Poiseuille component with a constant azimuthal pres- 
sure gradient. 

The main difference between the well-known Taylor 
vortex flow and the Dean vortex flow is that the geometry 
in which Dean rolls occur does not possess rotational sym- 
metry. Therefore, the observed vortex structure must be 
nonaxisymmetric. One consequence of this is the poten- 
tial occurrence of noninteger azimuthal wave-number 
modes on Dean vortices. Such modes are possible since 
the patterns are not constrained to obey periodic boundary 
conditions in the azimuthal direction, as is the case in the 
Taylor-Couette system. 

A few experiments have been realized to study sys- 
tematically the flow stability of the Dean configuration 
[11,12]. We have recently reported observations of Dean 
rolls in the Taylor-Dean system (5). Our experimental 
system consists of two horizontal coaxial cylinders. The 
inner cylinder, made of black Delrin plastic with radius 
a -4.486 cm, is fixed, and the outer, with radius 6-5.080 
cm, is made of Duran glass and rotates with angular ve- 
locity n [Fig. 1(a)]. The gap between the cylinders is 
d ~b -a -0.594 cm. The radius ratio n-a/6 =0.883 is 
large enough for the small-gap approximation to be rea- 
sonable. Teflon rings are attached to the inner surface of 
the outer cylinder a distance L -53.40 cm apart, giving an 
aspect ratio r-L/d-90. The working fluid is water with 
1% Kalliroscope AQ 1000 added for visualization. Its ki- 
nematic viscosity is v-0.98xl0_: crrr/sec at the tem- 
perature r-2l°C. The filling-level fraction n=9fl2n 
=0.75 weakly influences the instability threshold [15]. 

We define the control parameter of the system to be a 
modified Taylor number Ta-(Clbd/v)(d/b)tn, defined 
with respect to the outer cylinder parameters. The flow- 
pattern wavelengths are scaled by the characteristic 
length d, velocities are scaled by v/d. and the frequencies 
are scaled by the inverse of the radial diffusion time 
T =</:/v=36 sec. We have chosen the ramping rate (ex- 
perimental variation of the Taylor number) r=</Ta/ 
dl*<3, where I* ~t/f. in order to achieve quasistatic 
conditions and thus avoid introducing spurious hysteresis 
[13]. 

Flow frequencies are measured from the power spec- 
trum of single-point time series obtained with laser light 
that is reflected off the Kalliroscope flakes onto a photo- 
diode detector. Spatial-dependence data are obtained us- 
ing a 28-85-mm variable focal length lens to form an im- 
age of the visualized flow on a 1024-pixel charge-coupled 
device linear array interfaced through a computer au- 
tomated measurement and control (CAM AC) system to a 
computer. The line of 1024 pixels is oriented parallel to 
the cylinder axis. The output consists of intensity maxima 
and minima which correspond to the centers and bound- 
aries of the rolls. Space-time diagrams are then produced 
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by displaying intensity versus axial-position plots at regu- 
lar time intervals. An analysis of these plots yields both 
the roll size and the dynamics of the pattern in time and 
space. The spatial periodicity of the flow pattern is 
characterized by the wave number q "Ind/X, and its time 
dependence is characterized by the phase velocity rph. 
Both quantities are measured from the space-time dia- 
grams. 

Away from the Teflon end rings, the base state consists 
of a purely azimuthal flow in the bulk, recirculation rolls 
near one free surface, and a boundary-layer-type flow 
near the other free surface [14]. The recirculation rolls 
and the boundary layer flow have azimuthal extensions of 
about d from the free surfaces. In order to minimize the 
effect of the recirculation rolls, we chose a small gap in 
comparison with the mean radius of the system. In the 
small-gap approximation, the bulk base-flow-velocity pro- 
file V(x)=3x2-2x, where x-(r-a)/d. According to 
the Rayleigh circulation criterion for flow stability under 
centrifugally driven perturbations, the profile V(x) has 
one unstable layer of flow located between two stable lay- 
ers [Fig. 1(b)] [15]. The unstable layer belongs to the 
Poiseuille part of the flow and so we identify the instabili- 
ty to be of the Dean type. 

Rotating cylinder ends (Teflon rings attached to the 
outer cylinder) induce Ekman cells even for low values of 
Ta. They become observable at about Ta=25 near both 
ends of the system, and have an axial extension of —1.6. 
At larger Ta, stationary small rolls of average size lE =0.8 
are formed adjacent to the Ekman end cells. The max- 
imum number of those rolls is 6 whenTa = 80 (Fig. 2). In 
the following, this part of the system is referred to as the 
Ekman region. 

For Ta-91, cells in the Ekman region become time 
dependent, oscillating with a period of approximately 7 
sec or a frequency /-0.143 Hz (5.15 in scaled units). At 
the same time, 3-5 traveling inclined rolls that are moving 
toward the middle of the system are generated close to 
each Ekman region. These rolls have a wavelength 
>. = 1.584ora wave number q =3.967. The phase velocity 
of the traveling rolls depends on their axial position: close 
to an Ekman region, it is r =0.180 cm/sec (10.9 in scaled 
units). The Fourier spectrum of the reflected light inten- 
sity gives a peak frequency around /-0.136 Hz (4.90 in 

I 
I 

FIG. 2.  Space-time diagram of the flow with stationary rolls 
in the Ekman region on the left, for Ta=2.7. 
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scaled units). The frequency of the traveling rolls is near- 
ly identical to that of the oscillating rolls in the Ekman re- 
gion. There are no rolls observed in the middle of the sys- 
tem [Fig. 3(a)). The mixed state of traveling inclined 
rolls (perturbations of finite amplitude A ^0) and of lami- 
nar base flow (zero amplitude state) is stable, having been 
observed over many hours without noticeable changes. 
The transition has a hysteresis of about 13% in Ta. There- 
fore we have a subcritical Hopf bifurcation. While in- 
creasing Ta, the number of traveling inclined rolls in- 
creases on each side and the laminar base-flow extension 
decreases. For Ta—99, another set of traveling inclined 
rolls forms in the middle of the system (the laminar base- 
flow zone), with some rolls moving to the left and some to 
the right, separated by a dislocation source. They have 
both a wavelength value X—0.889 that is incommensurate 
with that of the initially formed, larger rolls, and a phase 
velocity that is more than two times larger than that of the 

nghi traveling laree rolls 

••••••• 
non oils region 

• • • 
-1$: of^e .-oils 

len mvftuii; 5 nail roils 

n in :ti v> JO 50 

i (cm) 

FIG. 3. Space-time diagram of the time-dependent flow pat- 
terns: (a) mixed state (Ta—91.0), (b) large traveling Dean rolls 
coexisting with small traveling rolls (Ta™95.9), and (c) phase 

larger rolls. This corresponds to a second transition to 
another mixed state with both different finite amplitudes 
and a zero amplitude [Fig. 3(b)]. The Fourier spectra ob- 
tained from single-point time series contain two different 
frequencies. The lower frequency corresponds to the 
motion of the large traveling inclined rolls and the higher 
frequency to the small traveling inclined rolls. The phase 
velocity of the large traveling rolls varies along the axis of 
the system. The presence of the small rolls retards the 
large rolls in the region of coexistence of the two types of 
rolls [Fig. 3(c)). At Ta=101, the zero amplitude state 
disappears and the flow pattern becomes a mixture of 
large and small traveling inclined rolls. The front between 
the large and small rolls in the space-time diagram moves 
irregularly [Fig. 3(b)l. This state is characterized by both 
two frequencies and two incommensurate wavelengths and 
is chaotic in appearance. At Ta=109, the small rolls 
disappear. The resulting flow pattern consists only of 
large traveling rolls (usually with a dislocation), and is 
characterized by one frequency component and two in- 
commensurate wavelengths (X\ -1.403, X2 = 1.733). 

At Ta=ll0, the flow pattern becomes stationary and 
axisymmetric after a transient period during which the 
pattern relaxes by adjusting its amplitude and phase 
(wavelength). The spatial evolution of the transition to 
the stationary state for a fixed value of the control param- 
eter has been recorded, and we find that the front between 
the time-dependent and stationary states has a finite ve- 

(a) 

(b) 

velocity of rolls as a function of axial position for Ta="95.9. 

FIG. 4. Transition to the stationary state for Ta= 115.8: (a) 
transient state with a moving front between the time-dependent 
pattern and the emerging stationary pattern, (b) final stationary 
state with wavelength modulation (only the central region of the 
system is shown). 
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locity iy"=0.6 cm/sec (36.4 in scaled units) which is larger 
than that of the traveling rolls themselves [Fig. 4(a)]. 
The phase velocity of the traveling rolls has a large 
discontinuity at the transition, as shown by varying the 
control parameter Ta in steps of <5Ta -0.165. Further- 
more, the transition is subcritical, as it exhibits a large 
hysteresis of about 20% in Ta. As a result of this transi- 
tion, the rolls become axisymmetric and the wavelength 
changes to A. ~ 1.80, corresponding to the wave number 
^—3.53 together with a two-roll modulation wavelength 
A—2.81 or wave number (? — 2.24 [Fig. 4(b)]. 

A linear-stability analysis of the base flow shows that 
the critical state is stationary and is characterized by 
<7, -2.875 and Taf-89.7 [15]. Rolls in the Ekman re- 
gions become oscillatory near the theoretical value for the 
onset of Dean rolls. We speculate that they perturb the 
flow in regions close to them, thus generating traveling 
Dean rolls. (The formation of the small traveling rolls 
may in turn result from a modification of the base flow by 
the large rolls. As yet there is no theoretical indication 
that they should come from the unperturbed base flow.) 
As the control parameter increases, centrifugally driven 
perturbations in the bulk of the system become dominant, 
forcing the time dependence (induced by oscillations in 
the Ekman regions) from the pattern. Therefore, the 
time-dependent roll pattern may be considered as a meta- 
stable phase, possibly induced by the ends of the system, 
between the laminar base flow and the stationary Dean 
vortex flow. 

The transition from a traveling roll pattern to a station- 
ary pattern is unusual for hydrodynamic flows. It has 
been observed so far only in convection with binary mix- 
tures of ethyl alcohol and water for negative values of the 
separation ratio [2-4]. This phenomenon was explained 
by the homogenization of the fluid mixture due to the el- 
imination of the Soret-effect-induced concentration gra- 
dient for sufficiently large convective amplitude. Recent 
experiments conducted in an annular container [4] have 

shown that the transition is continuous, without hysteresis, 
and that the phase velocity vanishes with the reduced con- 
trol parameter (Rayleigh number) following a power law. 
This is in relatively good agreement with both analytical 
and numerical calculations [16]. 

It is worthwhile to compare the flow considered in this 
paper with other similar systems. The pure Dean vortex 
flow that is observed in curved-channel Poiseuille flow 
consists, at the onset, of stationary almost axisymmetric 
rolls, except in the entrance region [11,12]. The transition 
to turbulence proceeds through instabilities of the rolls. 
In the Taylor-Couette system with a rotating outer cyl- 
inder and an inner cylinder at rest, no roll-forming insta- 
bility is found and the flow becomes turbulent for very 
large values of the control parameter Ta. Moreover, all 
states observed thus far in the Taylor-Couette system for 
general rotation rates of the inner and outer cylinders al- 
ways keep their time dependence [17], although reemer- 
gent periodic states [18] and periodic components in 
chaotic states [19] have been reported. Finally, the 
Taylor-Couette system subjected to a Coriolis force un- 
dergoes a transition from a disordered to an ordered, but 
still time-dependent, state [20]. 

In summary, the flow pattern in the Taylor-Dean sys- 
tem with the inner cylinder fixed undergoes an unusual 
transition from the laminar base flow to a complex time- 
dependent state which, in turn, bifurcates to a stationary 
state by a highly hysteretic transition process. Linear- 
stability theory applied to the bulk base flow does not cap- 
ture the basic features of the initial transition. A potential 
approach would be to use model amplitude equations with 
forcing to mimic the important end regions observed in 
this system. 

The authors would like to thank J. E. Wesfreid, L. 
Fourtune, and J. J. Hegseth for interesting discussions on 
the problem. This work was supported by the Office of 
Naval Research and NATO. 
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Abstract 

The stability of the traveling roll pattern observed in the Taylor-Dean system is investigated for 

different values of the rotation ratio. The increase of the control parameter induces a periodic in space and in time 

modulation of the pattern. External modulation of the pattern may give rue to standing waves for a given 

amplitude of modulation. 

1. Introduction 

The phenomena of pattern formation and the transition to turbulence remain chalenging 

for scientists despite big progress which has been done for decades in order to obtain a better 

understanding of those phenomena. Two prototype fluid systems have been chosen to study 

the pattern formation because of their relative simplicity: the Rayleigh-Benard convection and 

the Taylor-Couette system. In both systems, it has been observed that the pattern formation 

correspond to a symmetry breaking in the flow system which reduces the disorder and gives 

rise to a well organized pattern in a preferred direction. For example, in the Taylor-Couette 

system, the Taylor vortex flow corresponds to the breaking of the translational symmetry and 

the spiral vortex corresponds to the breaking of both the translational and the rotational 

symmetries. The wavy vortex flow is a result of the loss by Taylor vortex flow of the rotational 

symmetry [Golubitsky &Stewart, 1986]. 

The external symmetry breaking changes mainly the background state of the fluid 

system and leads to new types of flow pattern, the most important being the appearance at 

threshold of the time-dependent flow pattern. This is achieved in convection in binary 
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** Present address: S.P.S.R.M., C.E.N.-C.E.A . Orme des Mersiers. F-9I10I Gif-sur-Yvette Cedex. France. 
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mixtures[Kolodner &Surko, 1988], in Taylor-Dean system[Mutabazi, Hegseth, Andereck 

&Wesfreid, 1988], in liquid crystals [Rehberg.Rasenat ASteinberg, 1989], in printing 

instability[Rabaud, Michalland &Couder, 1990]. The advantage of the flow with time- 

dependent pattern at threshold is that the transition to chaos is more direct than in systems with 

stationary pattern at the onset of instability. In the Taylor-Dean system, the rotational symmetry 

is broken by partially filling the gap between two coaxial horizontal cylinders. The rotation of 

the cylinders and the free surfaces impose the flow to be reversed into the gap for sufficiently 

low rotation velocities. In the small gap approximation, the obtained base flow profile is a 

superposition of the Couette flow due to the rotation and the Poiseuille flow due to the 

azimuthal pressure gradient The Taylor-Dean system has been subject of intense investigation 

very recently because of the rich variety of pattern observed in it: traveling inclined rolls, 

stationary axisymmetric Dean and Taylor rollsrM&H&A&W, 1988]. The stability of traveling 

inclined rolls is of great interest because it leads to a new phenomenon called spatio-temporal 

modulation which has never been observed in other known systemsfMutabazi Mutabazi, 

Hegseth, Andereck &Wesfreid, 1990]. 

When the inner cylinder rotation velocity is modulated with a periodic external force, a 

standing wave roll pattern is observed for Rj values less than the critical value for traveling 

inclined roll. 

2. Description of experimental apparatus and procedure 

The system consists of the two horizontal coaxial cylinders, the inner cylinder of radius 

a = 4.486 cm rotates at angular velocity 2itfi, the outer cylinder of radius b = 5.080 cm may 

rotate at angular velocity 2nfo. The gap between the cylinders is d = 0.594 cm and the radius 

ration r) = 0.883. The system has been conceived as an extended system with the aspect ratio 

T = IVd = 90. The working fluid is water with 1% of Kalliroscope AQ1000 for visualization. 

The filling level fraction n = 8J/2H has been fixed at 0.75 where Of is the filling angle. The 

onset of the instability depends only weakly on the filling level and it has been verified that for 

n € [0.5,0.8], the variation of the R* is within the experimental precision («1%). The control 

parameters of the flow are the Reynolds numbers defined respectively for the inner and the 

outer cylinder: Rj = 2itf j aoW, Ro = 2jrf0bdA'. We fix the outer cylinder Reynolds number RQ 

and vary the inner cylinder Reynolds number Rj, so that one may define the reduced control 

parameter e = (Ri-Rjc)/Ric. 

i 

Fig. 1 : Schematic experimental geometry 
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Time-dependent properties of the flow pattern may be characterized by the frequency 

measurements at a single position using the light-reflectance technique which has been 

described previously. Spatial periodicity is obtained by using a 28-35 mm variable focal-length 

lens to image the flow pattern onto a 1024 pixel charge-coupled device (CCD) array element. 

The array is controlled by a CAMAC module, which also serves as the data gateway to the 

PDP-11 computer. This system is able to continuously process up to one frame every 0.07 sec. 

The output of the CCD camera gives the instantaneous reflected light intensity along the axis of 

the cylinders, the maximum corresponding to roll centers and the minima corresponding to 

inflow and outflow boundaries. Space-time diagrams I(z,t) are then produced by displaying 

intensity versus axial position plots at regular intervals along a time axis. 

3. Experimental results 

We describe the main steps of the transition from laminar flow to chaotic regime 

observed for the traveling roll pattern. 

3.1. Characteristics of the first instability 

The first instability from laminar base flow to traveling rolls is, within our experimental 

precision, a supercritical Hopf bifurcation. Because of the asymmetry of the base flow induced 

by die presence of recirculation rolls which has been recently described by Normand et al 

[Normand&Mutabazi&Wesfreid, 1990], the intensity of the rolls decreases along the azimuth 

such that they are weaker in the rear face than in the front face (Fig. 1). The observed traveling 

rolls are inclined by an angle of 20s from the vertical and they move along the axis of the 

system. As the rolls have no preferred direction of propagation at the onset, they may move 

either left or right of the system axis, and the direction of the propagation is the same as the roll 

inclination. Depending on initial conditions for the state above threshold flww the state is 

reached), both right and left traveling rolls may exist in the system separated by a vertical (non 

inclined) dislocation line. It represents a source which emits rolls traveling to the right and to 

the left. The wavelength of the roll pattern at the onset of instability is constant: X = 1.416. 

The frequency of the pattern, for fixed Ro, increases with Rj with different slopes 

corresponding to the linear growth of the perturbations and to their saturation. 

The figure 2 gives the distribution of the reflected roll intensity I(z,t) along the axis of 

the cylinders for regular time intervals (space-time diagram). The line of the same phase (roll 

line) are called characteristics, their slope gives the inverse of the roll propagation velocity. 

From the figure 2, it is observed that the roll propagation velocity varies along the axial 

coordinate z. This is a manifestation of the phase variation of the pattern which should lead to 

the phase instability. 

In fact, increasing the control parameter, the phase variation is enhanced and the high 

velocity rolls can collide with low velocity rolls, resulting in lost of a roll. This phenomenon is 
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Fig.2 : Space-time for traveling inclined roll close to the onset of instability RQ = 0, Rj = 263 

accompanied by the mechanism of adjustement (relaxation) of the wavelength, but because of 

the characteristic time x = d2/v, which differs of the period T = \lf\ of the pattern, the 

relaxation is not finished when another collision may occur, this leads to an erratic succession 

in time and space of the collision events in the pattern. These phenomena are sometimes 

referred to the phase turbulence and are common to time -dependent patterns in extended 

systems[Kolodner et al, Joets &Riborta]. 

3.2. Excitation of standing waves by    external modulation 

If the inner cylinder rotation velocity is modulated with a frequency fM and an amplitude AM, 

the threshold of the instability is decreased with increasing AM, and for f^» 2fj, the roll 

pattern appears in form of standing wave pattern (Fig.3). This is in good agreement with the 

calculations of Riecke et al(Riecke&Crawford&Knobloch,1988]. The standing wave pattern 

becomes unstable to traveling roll pattern with increasing R(. 

3.3. Spatio-temporal modulation  of the roll pattern 

The second instability of the traveling roll pattern appears in the form of a short- 

wavelength modulation of the traveling rolls with a lower frequency ii « fj/20 and a 

nonaxisymmetric envelope of wavelength A « 3X. The ratio i\Hz is function of Ro, while AA 

is constant for a large range of values R^The modulation envelope moves with a weak velocity 
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o 15.00 3000 
AXIAL   POSITION 

Fig.3 : Space-time diagram for standing wave excited by external modulation of the inner 

cylinder angular velocity : R^ = 0 , Rj = 265, RM/RIC = 0.2, the detunmng parameter e 

-0 

depending on the value of R<, (Fig.4). The second instability is also a supercritical Hopf 

bifurcation within the experimental precision of 1% on R,. The short-wavelength modulation 

may be due to the wavy modes which occur in the roll pattern because of the roll distorsion 

observed along their axis. 

a 
UJ 
m 

Id 
2 

0 9   00 18    0 

AXIAL    POSITION    (CM) 

Fig. 4 : Space-time diagram for short-wavelength modulated pattern Ro = 0, R, = 303 
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In fact, for given values of R, and inclination angle value, one can estimate the number of 

waves in the aamuthal direction to be 2.9 for R<, = 0 and we observe 2 waves in the front face 

while the third remain unobserved because of the decreasing intensity of the rolls along the 

azimuth. 

3.3. Transition to weak chaos from traveling roll pattern 

With further increase of the control parameter R,, the power spectrum becomes flat and no 

leading frequency may be detected But the space-time diagram shows that even individual 

rolls have lost coherence, the pattern conserves a spatial coherence around the modulating 

envelope wavelength. Increasing Rj, the space-time diagram shows a succession of traveling 

rolls zones separated irregularly by sources and sinks. In figure 5, we observe also that the 

modulating envelope pattern exhibits spanc-temporaJ defects due to the macroscopic phase 

variation with the time and the axial coordinate. 

if) 

O 1 5 . OO -5 >- 

AXIAL    POSITION    (CM) 

Fig.5 : Space-time diagram for weak chaotic pattern Ro = 0, e = 0.176 

4.Conclusion 

The traveling roll pattern in Taylor-Dean system with a large aspect ratio undergoes a 

sequence of transition : phase instability with spatio-temporal defects, short-wavelength 

modulation, appearance of sources and sinks in the pattern leading to a chaos. The standing 

wave pattern should be excited in the system by external modulation of the inner cylinder 

rotation velocity. 
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A MODEL OF THE DISAPPEARANCE OF 

TIME-DEPENDENCE IN THE FLOW 

PATTERN IN THE TAYLOR-DEAN SYSTEM 

Laurent Fourtune1, Innocent Mutabazi, C. David Andereck 
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INTRODUCTION 

The transition to chaos in diverse physical systems far from thermodvnamic 
equilibrium is one of the challenging problems of modern physics. The most commonly 
studied models in hydrodynamics are the Rayleigh-Benard thermal convection system and the 
Taylor-Couette instability1. 2, both of which have been intensively investigated during the 
last two decades. The transition to chaos has been characterized and various scenarios have 
been discovered experimentally and in numerical simulations of those systems3. These two 
systems possess several symmetries, the breaking of which gives rise to new patterns. 
However, the real world is far from these simple cases and an effort is underway to studv 
more complicated systems such as thermal convection in superposed layers of immiscible 
fluids4, the horizontal Taylor-Couette system with a partially filled gap5, the flow in curved 
channel6 or the boundary layer flow over a concave wall2 . 

The flow between two horizontal cylinders with a partially filled gap also known as 
the Taylor-Dean system, exhibits a rich variety of patterns of stationary and traveling rolls5. 
In the case when the outer cylinder is fixed, the initial instability occurs in the form of 
traveling inclined rolls, and upon increasing the control parameter, the roll pattern exhibits a 
spatio-temporal modulation7. In the case when the inner cylinder is fixed, the transition 
occurs as traveling inclined rolls which undergo a subcritical bifurcation to stationary 
axisymmetric rolls8. In this paper, we will describe in detail this transition and will give a 
tentative explanation using the Ginzburg-Landau equation model. 

The experimental system consists of two horizontal coaxial cylinders, a stationary- 
inner cylinder made of black Delrin plastic with radius a = 4.486 cm, and an outer cylinder 
made of Duran glass with radius b = 5.08 cm, which rotates with angular velocity Q. Teflon 
rings are attached to the inner surface of the outer cylinder a distance L = 53.40 cm apart, 

giving an aspect ratio T = L/d = 90. The working fluid is water with 1% Kalliroscope AQ 
1000 added for visualization, and its kinematic viscosity is 0.98 cstokes at the temperature T 

= 21C. The filling level fraction v = 0.75 weakly influences the instability threshold9. 

The control parameter of the system is the Taylor number Ta = (QRdA-)(d/R)1/2 

defined with respect to the outer cylinder parameters. The flow-pattern wavelengths are 

'Present   address   :   Eleve   de   I'Ecolc   Normale   Superieurc,   24   rue   Lhomond, 
F-75231   Pans  Cedex  05,  France 
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scaled bv the characteristic length d (gap size), the phase velocity is waled by v/d and the 

frequencies are scaled by the inverse of the radial diffusion time d:/v = ;b sec. We have 
chosen the ramping rate (experimental variation of the Taylor number) r = dTa/dt < 3 in order 
to achieve the quasistanc condition. 

rutjljcon looc -tcmru :aocxi zooe 

bulk flow lone 

Figure 1. Flow configuration : a)Experimental geometry     b) Base bulk flow velocity profile 

Flow frequencies are measured from the power spectra of single point series obtained 
with laser light reflected off the Kalliroscope flakes onto a photodiode detector. Spatial 
dependence data are obtained using a 28-85 mm variable focal length lens to form an image 
of the visualized flow on a 1024 pixel charge coupled device (CCD) linear array interfaced 
through CAMAC to a computer. The line of 1024 pixels is oriented parallel to the cylinder 
axis. The output consists of intensity maxima and minima which correspond to the centers 
and boundaries of the rolls. Space-time diagrams are then produced by displaying intensity 
versus axial position plots at regular time intervals. Analysis of these plots yields the roll size 
and the dynamics of the pattern in time and space. The spatial periodicity of the flow pattern 

is characterized by the wavenumber q = 2K d/X and its time-dependence by the phase 
velocity, both quantities measured from the space-time diagrams. 

EXPERIMENTAL RESULTS 

Rotating cylinder ends, in our case Teflon rings attached to the outer cylinder, induce 
Ekman cells even for low values of Ta. They become visible at Ta = 25 near both ends of the 
system and have an axial extension of 0.95 cm. At larger Ta, smaller stationary small rolls of 

average size XE = 0.48 cm are formed adjacent to the Ekman end cells. The maximum 
number of those rolls is 6 when Ta = 80. As they are localized in space and their spatial 
extent does not increase, this part of the system is referred to as the Ekman region in the 
following. For Ta = 91, cells in the Ekman region become oscillatory with a frequency f = 
0.143 Hz, and at the same time, 3 to 5 traveling inclined rolls moving toward the middle of 
the system are generated close to each Ekman region. These rolls have a wavelength A. = 
1.584 or wavenumber q = 3.967. 

The phase velocity of the traveling rolls depends on their axial position : close to an 
Ekman region, it is v = 0.180 cm/sec. The Fourier spectrum of reflected light intensity gives 
a frequency peak around f = 0.136 Hz (4.90 in scaled units). The traveling rolls frequency is 
nearly identical to that of the oscillating rolls in the Ekman region. There are no rolls 
observed in the middle of the system. The mixed state of traveling inclined rolls 
(perturbations of finite amplitude A* 0) and of laminar base flow (zero amplitude state) is 
stable, having been observed over many hours without noticeable changes. The transition 
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Figure 2-a . Stationary Ekman region (Ta=82.7)     Figure 2-b . Oscillatory Ekman region and 
emission of traveling rolls (Ta=91) 

has a hysteresis out 13% in Ta, and is a subcritical Hopf bifurcation. Increasing Ta, the 
number of craven:u inclined rolls increases on each side and the laminar base flow extension 
decreases. At Ta = 110, the flow pattern becomes stationary and axisymmetric after a 
transient period during which the pattern relaxes by adjusting its amplitude and phase 
(wavelength). The spatial evolution of the transition to the stationary state for a fixed value of 
the control parameter shows that there exists a front between the time-dependentand 
stationary states, moving with a finite velocity vf = 0.65 cm/sec, larger than that of the 
traveling rolls themselves. The phase velocity of'the traveling rolls has a large discontinuity at 
the transition. Furthermore, the transition exhibits a large hysteresis, about 14% in Ta. The 

rolls become axisymmetric and the wavelength changes to X = 1.80, corresponding to the 

wavenumber q = 3.53, together with a two-roll modulation wavelength A = 2.81 or 
wavenumber Q = 2.24. 

Axial    PoF.t.on      ,-.71 -I.v/d.'    F? •-/'. on 

Figure 3 . a)Disappearance of time-dependence and b)stationary Dean rolls with spatial modulation 

Stationary small rolls     Induced 
in Ekman region           traveling rolls 
 91  

Left and right traveling 
rolls  fill the whole svsiem 

101 102 

Stationary Dean rolls 
appear in the flow 

110  Ta 

er,d<0        er = 0 £d = 0 er,d>0 

Figure 4 . Transition sequence for the control parameter ( Ta or e) 
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DISCUSSION' OF RESULTS 

In order to understand the previous results, we analyze the structure of the base How 
when only the outer cylinder rotates. The base flow consists of the azimuthal bulk flow, of 
the flow in the recirculation zone and of the flow in the Ekman region. The flow in the 
recircuiation zone has an extension comparable to the gap size d and chosing the small gap 
approximation, we are able to reduce its influence. The Ekman region is small compared to 
the whole length of the flow extension (1E = 0.05 L). The velocity profile of the azimuthal 
bulk base flow (in the small gap approximation) is given by V(x) = 3x2 - 2.x (Pig.l-a) and as 
deduced from Rayleigh's stability criterion, it has one unstable layer sandwiched between 
two stable layers.'The unstable layer is subject to the Dean instability as it belongs to the 
Poiseuille part of the profile. The linear stability theory applied to this velocity profile V(x) 
gives a stationary critical state with the following characteristics : qc = 2.875, Tac = 89.74. 
The stationary state appears at Ta = 110 with the wavenumber q = 3.53, therefore we 
consider that the transition to stationary rolls is the true Dean instability, the difference in 
critical parameters and the prexisting observed states are due to the boundary effects, mainly 
the flow in the Ekman region. The time-dependent roll pattern observed close to the Ekman 
region is a metastable phase due to the excitation by the Ekman region into a propagating 
medium (flow in our case). When the small rolls in the Ekman region become oscillating, the 
Ekman region can be considered as an oscillatory localized source (with frequency cu ) which 
emits traveling rolls in the flow.The time dependent structure is inclined for symmetry 
arguments and has a wavenumber which is evidently selected by the frequency in the Ekman 
region. 

Amplitude equation and emission of rolls in subcritical regime ('£ < 0) 

In order to understand these results, we represent the perturbative velocity in the 
time-dependent flow pattern (right traveling) in the separable form : 

v'(t,x,y,z) = A(t,z) F(x) exp{i(Cuct - qcz - pcy)) 

where F(x) is the structure function and the envelope A(t,z) satisfies the one dimensional 
complex Ginzburg-Landau amplitude equation : 

3*  . Vg ^ = e (1 +ic0)A+ q0
2( 1 +ic i )0 -g( 1 +ic2)lA^A (1) 

where e = (Ta-TaJ/Tac is the relative distance from the onset of instability, 
Vg is the group velocity of the flow pattern, 
c/j is the coherence length of the perturbations, 
co, c\ and c2 are respectively the corrections to the frequency due to the control 

parameter, the wavelength and amplitude variations, and 
g is the Landau constant of the nonlinear saturation. 

We consider the Ekman region as a localized source emitting at the same frequency u^ at z = 
0 and z = L where L is the whole length of the flow extension. Far from the Ekman region, 
the amplitude of one induced traveling roll pattern is decreasing to zero. We therefore impose 
the boundary condition on the Ginzburg-Landau equation at one end, for example z = 0, 
without loss of generality : A(t, z= 0) = An exp {i(a>-coc)t}, where An represents the strength 
of the source. The spatial dependence of the envelope is chosen as follows A(t,z) ~ exp (ikz) 
where the wavenumber k is a complex number whose real part kr is the correction to the 
wavenumber qc and the imaginary part kj gives the spatial damping length of the perturbation 
induced by the localized source. A similar problem formulation has been successfully applied 
to open   flows such as wakes and jets"-* The problem stated in this way contains many 
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parameters /g, C],c; and A,), while \o :an be removed bv   sculms of '.he axial 
coordinate z and of the amplitude A. The group velocity cannot be removed since the system 
does not possess the Galilean invanance because of the boundaries. For simplicity of the 
analysis, we consider c\ = 0 = C2; numerical simulations with different values have shown no 

qualitative difference with the results given here. For £ < 0, all perturbations are damped, but 

for small lei, the damping is slow and some strong external excitation (in our case oscillatory 
Ekman rolls) may lead to observable stable solutions of the CGL equation. The results are 
then : 
1. When u = 0, vg = 0 and we obtain the trivial solution A(t,z) = 0, which means that the 
stationary Ekman region does not induce a propagating flow pattern. 

2. When a * 0, vg * 0, A *■ 0 : any external time-dependent excitation can propagate in the 

system with a vg = (tü-a)c)/(qc+kc). The amplitude of the perturbative envelope A exhibits 

two successive regimes in z-dependence : nonlinear A ~ z"1^ and linear where A - e (e'vS)z 

(Figure 5-a shows A(z) for different values of e). For fixed An and vg, the spatial damping 
coefficient kj is estimated from our numerical calculations (from distance at which the 

excitation damps by a factor of 10) : it is a linear function of e except for small values when 
the dependence becomes nonlinear. 

'I   SO  100  ISO  200 250  :)00  J00  400 

Figure 5-a . Spatial amplitude variation for 

different values of e 

Figure 5-b . Spatial damping coefficient k, 

as function e 

Hysteresis as result of modes interaction 

In the flow regime between Ta = 101 and Ta = 110, both traveling inclined and Dean 
rolls interact, therefore the flow pattern may be described by 3 amplitudes : Ar for right 
traveling inclined rolls, Ai for left traveling inclined rolls and Ad for Dean rolls. Without loss 
of generality and for simplicity, we analyze the interaction between the right traveling Ar and 
Dean rolls Ad. Experimentally, the bifurcation to traveling rolls is supercritical and that to 
Dean rolls is subcritical, therefore we have the Ginzburg-Landau equations at 5^ order, 
neglecting the spatial dependence : 

dAT jf = ErAr .(&IAr l2+ grdlAdl2)Ar. hr A^4Ar. krd IAdi4 Ar _ frd lA^A^A, (2-a) 

at = EdAd- (gdrAr I-+ gjAj'-Uj - hd IAjl4Ad . krd Arl4 A4 - frd lA^A^Ad C-b- 
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where gr >0, gd < 0, dr > 0, dj > 0 after the nature of the bifurcations, and the coupling 
constants grd. grd, ^rd- frd < 0. as the interaction between modes is only destructive. By 
assumption gr << (gd. grd. gdr). i-e-. 'he right traveling rolls are dominated by linear growth 
as maintained by the external source. 

Ramping up, the amplitude IA<jl of the Dean rolls is very small so that all terms in 
equation (2-a) containing !Adln>2 are negligible, and therefore the right traveling rolls have 
amplitude lAfi given by : 

and 

ArJ2=—L for smaller 
gr 

IArJ2 = - & + A 1/2(1+-2^) 1/2 for large er hr     hr 4erhr 

The equation for Dean rolls can be written in the form, where we have neglected the spatial 
variations : 

^ = e<lcfrAd - gdeflIAdl2A<i - hy IAdl4Ad (3) 

with       £dcff = Ed - gdr lApl2 - W lArl4   gdeff= gd + fdrlArl2 

For small er, £deff < 0, the Dean rolls are damped and the flow is dominated by the 

right traveling rolls. For large er, the quantity Edcff can pass through zero toward positive 
values and therefore, the Dean rolls can grow in the flow. The onset of Dean rolls is given by 

the condition £deff = 0, this condition corresponds to Ta<; = 110. Once the Dean rolls have 
appeared in the flow, tne linear growth and the nonlinear interaction coefficient become more 

important because of the coupling with the right traveling rolls. If for large er, gdc = 0, the 
transition to Dean rolls should change from subcritical to supercritical. This would explain 
the long time needed for the transition from the time-dependent to stationary Dean rolls. 

The right traveling rolls equation becomes : 

^ = er=ffAr. g^lA^Ar - dr Arl4Ar (4) 

where 
ercff = erAr. grdlAd I2 . drdHAd I4  and gr

cff = gr + frdIA<j I2 

With the growth of the Dean rolls, er
cffcan pass through zero to negative values and 

as the quantity gr « gd, the traveling rolls are overturned by the Dean rolls through nonlinear 
interaction. So we have shown that the transition to Dean rolls is highly hysteretic because of 
the interaction with the right traveling rolls. 

CONCLUSION 

The flow between two horizontal coaxial cylinders with a partially filled gap, when 
only the outer cylinder rotates, exhibits an unusual transition from time-dependent patterns 
induced by the Ekman regions to a stationary axisymmetric pattern flow. This transition and 
its hysteretic nature is understood using the Ginzburg-Landau equation, with an external 
source. There is still an open problem concerning the spatial modulation of the stationary 
rolls. 
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Drift Instability and Second Harmonic Generation in a One-Dimensional Pattern-Forming System 

Innocent Mutabazi(a) and C. David Andereck 
Department of Physics, The Ohio State University, 174 WI8th Avenue. Columbus, Ohio 43210 

(Received 25 September 1992) 

The transition to spatiotemporal chaos in the neighborhood of a codimension-two point observed in the 
Taylor-Dean system is investigated. The initial instability is to stationary Dean vortex flow, which be- 
comes unstable to a drift instability, followed by a wavelength-halving instability. This sequence of tran- 
sitions may be explained in terms of the interaction between the first and second spatial harmonics of the 
basic pattern. 

PACS numbers: 47.52.-f-j, 47.32 -y 

The formation of patterns in systems far from equilib- 
rium has been intensively investigated in the last few- 
years because of the diversity and richness of the states 
resulting when the stress applied to the system varies. 
Recently, particular attention has been drawn to those 
one-dimensional extended systems in which oscillatory 
states occur from the onset of either the first instability or 
as the secondary instability [1-4]. This has been 
motivated by the leading role played by the breaking of 
symmetries (such as the occurrence of a frequency in the 
pattern, drifting, or localized traveling pulses) in the 
transition to chaos. Recent developments in the nonlinear 
Ginzburg-Landau theory for dissipative systems have 
provided fresh insight into some of the experimental phe- 
nomena such as the localized pulselike structures in cellu- 
lar patterns and the dynamics of defects [5,6]. In partic- 
ular, a model of the interaction of the second harmonic 
with the fundamental mode in dissipative systems, 
developed in the context of the Kuramoto-Sivashinsky 
equation [7], has been adapted to explain the drift insta- 
bility observed in the above experiments [8]. Moreover, 
spatial period halving (followed in some cases by spatial 
period doubling from the new fundamental wavelength) 
has been observed in directional solidification when the 
interface is rapidly driven above the drift threshold and 
then rapidly driven back to a stationary cellular regime 
[2], The spatial second harmonic in that case is thus a 
consequence of a "forced" wavelength selection process. 
Therefore the question of the second harmonic generation 
and of its stability, familiar from other fields such as non- 
linear optics [9], may also be investigated in dissipative 
systems far from equilibrium. The problem of resonant 
wave interaction between the fundamental mode and the 
second harmonic has been addressed in the Taylor- 
Couette system [10], in directional solidification [II], and 
in double-layer thermal convection [12,13]. 

We report here recent experimental results from a 
one-dimensional pattern-forming hydrodynamic system in 
which the underlying features of the second harmonic 
generation and its stability arise naturally (without a 
"forcing procedure") when the control parameter driving 
the system is increased continuously from the base flow 
state to bifurcated states (cellular patterns).  As a func- 

tion of the control parameter R (to be identified below) 
three main regimes were observed: For R < Rc, the flow 
is patternless; for Rc < R < Rd, the flow consists of a sta- 
tionary cellular pattern with a constant mean wavelength; 
and, for Rj < R < /?», the cellular pattern drifts at a con- 
stant velocity. For /?—/?*, two patterns with different 
spatial wavelengths coexist separated by a line. For 
/?>/?*, the large wavelength pattern disappears leaving 
only a small wavelength pattern. For still higher values 
of the control parameter, the flow becomes chaotic. We 
will describe these results in more detail and seek an ex- 
planation for them in the context of recent theoretical de- 
velopments. 

We consider the Taylor-Dean system [4], which con- 
sists of two independently rotating horizontal coaxial 
cylinders with a partially fluid-filled gap. In significant 
contrast with the Taylor-Couette system [14], the partial 
filling of the gap in the Taylor-Dean system produces two 
free surfaces. The rotation of the cylinders drives the 
fluid toward the free surfaces, and, to reverse it, a pres- 
sure gradient along the azimuthal direction is created. 
Far away from the free surfaces, the flow velocity profile 
is a combination of a Couette profile due to the cylinder 
rotation and a Poiseuille profile due to the azimuthal 
pressure gradient. The streamline curvature induces a ra- 
dial stratification of the fluid particle momentum. 
Rayleigh's stability criterion [14] predicts, in the case of 
negative momentum stratification, that centrifugal insta- 
bilities will occur and manifest themselves as a pattern of 
longitudinal rolls periodically spaced in the spanwise 
direction and superimposed on the base flow. The linear 
and nonlinear stability analyses of this flow show that, de- 
pending on the relative velocity of the rotating cylinders, 
the destabilization of the different potentially unstable 
layers gives rise to either stationary or traveling roll pat- 
terns with different wave numbers, the ratio between 
them varying from I to 2.5 [15,16]. Thus, the Taylor- 
Dean system realizes a quasi-one-dimensional extended 
system with competing instabilities with various wave- 
lengths. 

Our experimental system consists of an inner cylinder 
made of black Delrin plastic with radius a —4.486 cm, ro- 
tating at angular velocity fl,, and an outer cylinder, with 
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radius 6-5.080 cm, made of Duran glass and rotating in 
the same direction as the inner cylinder at angular veloci- 
ty n0. The gap between the cylinders is d —b - a -0.594 
cm, and the radius ratio t]—alb —0.883. Teflon rings 
are attached to the inner surface of the outer cylinder a 
distance L -53.40 cm apart, giving an aspect ratio V 
— Lid— 90, large enough to realize a quasi-one-dimen- 
sional extended system. The working fluid is water with 
1% Kalliroscope AQ 1000 added for visualization. Its ki- 
nematic viscosity is v-0.98* 10~2 cm2/sec at 21 °C. 

We define the flow control parameters to be the Rey- 
nolds numbers relative to the inner and outer cylinders, 
respectively: Rj — iljad/v, R0 — il0bd/v. In this experi- 
ment, fi0 was kept fixed, and we varied slowly (quasistat- 
ically) the inner cylinder speed from the base flow state 
to a bifurcated state, therefore the control parameter 
/?—/?,. The ramping rate (experimental variation of the 
inner cylinder Reynolds number) r=dR,/dt* < 3 where 
l* —//r [17]. The Reynolds numbers are measured 
within a precision of 2%. 

Flow frequencies are measured from the power spec- 
trum of single-point time series obtained with laser light 
that is reflected off the Kalliroscope flakes onto a photo- 
diode detector. Spatial dependence data are obtained us- 
ing a 28-35 mm variable focal length lens to form an im- 
age of the visualized flow on a 1024-pixel charge-coupled 
device linear array interfaced through a computer au- 
tomated measurement and control (CAMAC) system to 
a computer. The line of 1024 pixels is oriented parallel to 
the cylinder axis. The output consists of intensity maxi- 
ma and minima which correspond to the centers and 
boundaries of the rolls. Space-time diagrams are then 
produced by displaying intensity versus axial position 
plots at regular time intervals (At —0.07 sec). The spa- 
tial periodicity of the flow pattern is characterized by the 
nondimensional wave number q—lndlX, and its time 
dependence is characterized by the propagation velocity r 
or the frequency/. 

The main experimental results to be described here are 
represented in the parameter space (/?„,/?,•) of Fig. 1, 
where R0 € (205,250). The critical values of the control 
parameter for the first and second instabilities depend 
sensitively on R0. The first instability gives rise to sta- 
tionary axisymmetric rolls aligned along the aximuthal 
direction. The second instability occurs via a supercriti- 
cal bifurcation, resulting in axisymmetric rolls traveling 
along the axial direction. The propagation velocity of the 
rolls at onset is of order 10~2 cm/sec— 0.6v/d. This be- 
havior is usually referred to as a drift instability and has 
been interpreted recently, for other flows, as the result of 
an interaction between the fundamental mode and the 
damped second harmonic [8l. We have found clear evi- 
dence for the importance of the second harmonic in the 
present work. Close to the onset of this instability (for R, 
less than about 300 in the case shown in Fig. 2), the drift 
roll velocity is, within experimental uncertainty, a linear 
function of the roll amplitude in agreement with the 
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FIG. 1. The experimental parameter space (/?<,,/?,) in the 
neighborhood of the investigated codimension-two point (locat- 
ed approximately by the arrow): Solid diamonds represent the 
onset of the stationary modes (/?,,]), stars represent the onset of 
the drift instability (Rici), and open squares refer to the onset 
of the halving instability (Rid). 

theoretical model [8]. The traveling rolls have almost the 
same wavelength as the stationary rolls. Just above on- 
set, a phase instability occurs that results in roll annihila- 
tion and creation events. For each experimental trial, 
these events occur at different axial positions, but con- 
sistently have a time period approximately equal to the 
roll drift period (Fig. 3). The points in the space-time di- 
agram where annihilation and creation occur are spa- 
tiotemporal defects or grain boundaries [6,18]. There is 
always an odd, small number (1,3,5,.. .) of these defects, 
the number selected depending on the control parameter 
/?, and the ramping rate. 

A further increase of /?, leads either to the extinction 
of the pattern for 205 </?„< 213 (by crossing the line 
marked by solid diamonds in Fig. 1) or to pattern weak- 
ening, detected visually by a loss of pattern contrast and 
quantitatively by a measured decrease of the drift fre- 
quency fd (which is proportional to the roll amplitude 
near the onset of the drift instability), for fl0>213. 
Near /?0-213, there is neither roll weakening nor roll 
extinction, but the transition occurs for /?,-=315 to a 
state with large rolls and small rolls occupying different 
regions along the system axis. At the boundary or wall 
between the regions (the location of which depends on 
/?,), a large roll propagates and splits into two rolls of 
different sizes (Fig. 4) which propagate in the direction of 
the parent roll and with approximately the same drift ve- 
locity. Such states are observed for a finite range of the 
control parameter values R, e [315,330]. The generally 
observed case is that where large rolls occupy a part (e.g.. 
the left part) of the flow pattern and small rolls occupy 
the remainder (right); however, states with small rolls 
sandwiched between regions of large rolls have also been 
observed. The points in the parameter space (R0,R,) 
near which both roll types coexist in the system are called 
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FIG. 3. Space-time diagram of traveling rolls with spa- 
tiotemporal defects for /?„-242, /?, —282. In this diagram, 
representing 60% of the whole flow pattern, there are three po- 
sitions where spatiotemporal defects occur: z\ —6.4 cm" 10.8c/, 
72-12.2 cm-20.5<A z3-25.8 cm-43.4</, the left end of the 
pattern being located 9.7 cm —16.3</ away from the origin of 
this plot. The period between defects at the same position is 28 
sec-0.78</Vv for Ä0-242, /?,■ —282. The whole pattern con- 
tains five defects (three sourcelike and two sinklike). In a 
sourcelike defect, a roll splits to form two rolls, while in a sink- 
like defect, two rolls collide to form one roll. 

decreases as R0 increases. The small rolls are periodical- 
ly modulated in space and time (their intensity increases 
and then decreases as they propagate) and behave like a 
two-roll packet (drifting at the same velocity) in which 
the rolls exchange energy. In the small rolls region, we 
have observed localized in space and time remanent large 

FIG. 2 (a) Drift frequency (proportional to the roll drift ve- 
locity): + represents the frequency of the fundamental mode 
(large roll state) and * represents the frequency of the small 
roll state; and (b) dimensionless roll wave number q as a func- 
tion of the control parameter /?, for fixed /?<, — 242: x repre- 
sents the wave number of the fundamental mode (large rolls, 
whether stationary or drifting); open squares represent the aver- 
age wave number of the small rolls. The pattern above /?,=380 
is chaotic. 

codimension-two points. The occurrence of small rolls 
reduces the domain of large rolls until they disappear en- 
tirely from the pattern when the control parameter is in- 
creased above 330. For a fixed value of /?,, the wall posi- 
tion fluctuates in space and time (Fig. 4) in a zone of ap- 
proximately a parent roll size. 

For R0 > 213 and less than about 250, the weak rolls 
again give rise to coexisting small rolls (/?,<• 3 in Fig. 1), 
but the small rolls fill the system after only a small in- 
crease of Rj. In fact, the range of the values of /?, in 
which the coexistence of large and small rolls is observed 

70.0 f¥/4 

35.0 

Position   (cm) 

FIG. 4. Space-time diagram for coexisting large and small 
traveling rolls in the vicinity of the codimension-two point 
</?0 —213. /?,-326). Each large roll splits into two rolls of 
different sizes which propagate in the same direction forming a 
two-roll packet. 
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rolls. For /?0<2I3, a transition occurs as indicated by 
the crosses in Fig. I from the now patternless flow to 
traveling rolls which are about half the size of the former, 
extinct, rolls. 

In all cases, the spatial Fourier spectra show that the 
frequencies and the mean wave numbers of the small roll 
and superseded large roll pattern states are in ratios close 
to 2:1; the differences <5/-/* —2/^—0.01 and Sq-q2 

-2<? 1—0.20 evidently are due to the spatiotemporal 
modulations of the small rolls, and other temporal and 
spatial phase gradient related instabilities. Since the 
second frequency fh is almost twice the former drift fre- 
quency (fh — 2fd) and the small rolls have a size almost a 
half of the former rolls (Fig. 4), this transition may be 
called a halving instability. 

The linear stability analysis of the Taylor-Dean system 
shows that [16], near the particular value of the relative 
rotation velocity p-n0/n,-0.714, which is in the range 
of values of (R0,Rt) considered  here,  the  marginally 
stable  modes are stationary and  have  wave  numbers 
which are quite resonant (2:1).  Therefore, following the 
general nonlinear analysis of resonant stationary modes 
[8,12], we may conclude that their interaction leads to 
the predominance of either the fundamental mode (ax- 
isymmetric stationary rolls) for low values of /?, > Ricl or 
the mixed states of fundamental and second harmonic 
modes with finite phase shifts between them, which give 
rise to drifting rolls for /?, > Ric2.  The effective growth 
rate of the drifting rolls decreases, leading to the pattern 
extinction or weakening observed experimentally.   The 
generation of the small traveling rolls from the large rolls 
probably originates in the mechanism of the second har- 
monic generation, when the effective growth rate of the 
drifting mode crosses zero to negative values, while that 
of the second harmonic becomes strong enough to over- 
ride the fundamental mode.  This flow pattern is in turn 
subject to new phase instabilities and, in fact, at their on- 
set, the small traveling rolls have at least two frequencies 
and are modulated in space.  The simultaneous presence 
of large and small traveling rolls in the Taylor-Dean sys- 
tem constitutes an  important realization of coexisting 
stable time-dependent states in a nonequilibrium hydro- 
dynamic system.   An understanding of the dynamics of 
the wall between the two stable drifting states with two 
different wavelengths remains for the future. 

In summary, the roll patterns observed in the Taylor- 
Dean system near the codimension-two point undergo an 
unusual sequence of transitions: stationary rolls, the drift 
instability, pattern extinction or weakening, a halving in- 
stability, and finally a small modulated roll packet 
emerges. All these transitions and the properties of cor- 
responding states suggest that they originate in the 
interaction between the fundamental and second harmon- 
ic mode. 
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Effects of External Noise on the Freedericksz Transition in a Nematic Liquid Crystal 
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We have determined the effects of imposing dichotomous noise on the magnetic Freedericksz transi- 
tion in the nematic liquid crystal MBBA. Various states of the nematic orientation occur, depending on 
the magnitude of the dc field and the amplitude and correlation time of the noise component. The resul- 
tant phase diagrams are in partial agreement with the analytic results of Horsthemke, Doering, Lefever, 
and Chi for H> He. A substantial deviation of the experimental result from computer simulations 
based on their model for low magnetic field (H <HC) is observed. 

PACS numbers: 61.30.Gd, 05.40.+j, 64.60.Ht, 64.70.Md 

The effects of imposing external noise on nonlinear 
systems has been investigated in situations as diverse as 
the Briggs-Rauscher chemical reaction1 and superfluid 
turbulence.2 Under certain conditions such systems may 
show extreme sensitivity to noise. It has been shown that 
multiplicative external noise can induce a variety of tran- 
sitions (or affect transitions already present), but rarely 
have observations of noise-induced behaviors been amen- 
able to quantitative theoretical understanding. For ex- 
ample, Kai, Kai, and Takata3 and Brand, Kai, and Wak- 
abayashi4 carried out experiments to study the effects of 
external noise on the electrohydrodynamic instabilities of 
a nematic liquid crystal. They found that imposing noise 
can shift transition thresholds and stabilize the system 
against turbulence. However, quantitative agreement 
with existing theory was not possible. In their experi- 
ments, external noise affected the liquid-crystal system in 
two ways: directly, by the fluctuations of the control pa- 
rameter, and indirectly, by the dependence of the 
spatial-pattern wavelength on the noise intensity. The 
spatial inhomogeneities introduced both theoretical and 
experimental difficulties for the study. These difficulties 
are overcome in the present study of the Freedericksz 
transition of a nematic liquid crystal, which was suggest- 
ed by the theoretical work of Horsthemke, Doering, Lef- 
ever, and Chi.5 The Freedericksz transition consists sim- 
ply of a rotation of the nematic director; no roll pattern 
or other flow is generated. This makes possible a more 
complete theoretical treatment than for the earlier, more 
complex, experimental situations. 

The Fokker-Planck equation has been the usual start- 
ing point for studies of the effects of colored noise on 
nonlinear systems,6"8 but no analytic results have been 
obtained except for dichotomous noise. Dichotomous 
noise consists of a signal which jumps between two levels 
at random times. It is a special case of colored noise 
with an exponentially decreasing correlation function.9 

Horsthemke et al.5 investigated theoretically the effects 
of dichotomous noise on the Freedericksz transition. In 
their study, the state of the stochastic system was 
characterized by the probability density function of the 
rotation angle of the liquid-crystal molecules.  The gen- 

eral form of the probability density was obtained analyti- 
cally as a function of noise amplitude and correlation 
time. It was found that various distinct states of the sys- 
tem (as indicated by the form of the probability density 
function) could be induced by changing the control pa- 
rameters. 

Stocks, Mannella, and McClintock10 studied this mod- 
el system with an analog simulator. Generally, they ob- 
tained good agreement with the predicted transition lo- 
cations, not unexpected since they were solving by a 
different method the same equation that Horsthemke et 
al.5 proposed. By contrast, our experiment was designed 
to investigate the effects of dichotomous noise on the 
Freedericksz transition in the actual physical system. 
The experiment verified qualitatively the analytic predic- 
tion for one case, although the data are in better agree- 
ment with a computer simulation based on a more exact 
version of the model. We also found a parameter region 
where only partial agreement between the experiment 
and our simulation exists. 

We studied the Freedericksz transition with a layer of 
a nematic liquid crystal [N-(p-methoxybenzylidene)-/?'- 
butylaniline (MBBA), in our case] sandwiched between 
two glass plates lying parallel to the x-y plane. The 
inner surfaces of the glass plates are coated with polyvi- 
nyl alcohol (PVA) and rubbed along the x axis. The 
resultant grooves give a surface topography such that the 
lowest surface energy will be reached when the director 
aligns with the groove pattern" [see Fig. 1(a)]. The 
magnetic field, which is perpendicular to the initial 
orientation of the molecules, produces a torque on the 
molecules due to their anisotropic susceptibility. The 
magnetic torque tends to align the molecules in the 
direction of the field. It is counteracted by viscous and 
elastic torques. Assuming that the orientations of the 
molecules are uniform across the x~y plane the following 
equation, with boundary conditions at the plates (z 
~±<//2), can be obtained by balancing these three 
torques: 

Xid/0~*229«0+*<i# sin0cos0, (1) 
9(±d/2)-0, 
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FIG. 1. (a) The molecules close to the plates are in approxi- 
mate alignment with the x axis; those near the middle of the 
layer rotate in the x-y plane when H > Hc. (b) Schematic dia- 
gram of the experiment, (c) Typical interference pattern for 
H-0, 

where 6(z,t) is the angle between the director and the x 
axis, A.i is the twist viscosity, K22 is the twist elastic con- 
stant, Xa is the anisotropic susceptibility, H is the applied 
magnetic field, and d is the sample thickness. 

Equation (1) can be written in dimensionless form as 
follows: 

drö-3zv0+A2sin0cosö, 
where 

(2) 

*"7 
K 22 

Xa 

1/2 

h = 
H_ 

ro = 
\\d2 

t        ,_ nz 
—,   z =■ 

(3) 

TO d 
r0 is the relaxation time of the sample. Hc is the critical 
field for the transition, found by solving 9r0-O. 9 is ob- 
tained implicitly as a function of the magnetic field12 as 
follows: 

re 
sin0m,j h>l 

(4) 
em -0, h < 1. 

Here, F(sin9m,rc/2) is the complete elliptic integral of 
the first kind and 9m is the rotation angle of the mole- 
cules halfway between the plates. Equation (4) shows 
that the liquid-crystal molecules start to rotate when the 
magnetic field exceeds a threshold magnetic field Hc. 
This is the Freedericksz transition for this geometry. 

With the noise signal added to the magnetic field, h in 
Eq. (2) is replaced by h-h + 8„ where S, is the noise 
signal divided by Hc. Equation (2) becomes 

dt9'0::+(h+S,)2sii\0cos9. (5) 

Retaining the lowest spatial mode 9—0U)cosUz/d), 
Eq. (5) becomes 

dte--0+(h + 8,)2sin9cos9. (6) 

Horsthemke et al.5 further simplified this equation by 
expanding sinöcosö for small 9 and obtained 

dr9--0+(h + 8,)2(9-±9i). (7) 

The probability density function of 9m is introduced to 
describe the state of this stochastic system and it is 
analytically obtained by solving the Fokker-Planck equa- 
tion resulting from Eq. (7). By examining the solution 
for divergences and local extrema, the locations of tran- 
sitions between different probability density functions 
were determined. 

Figure 1 (b) shows the experimental setup. The sam- 
ple cell is mounted on the stage of a conoscopic micro- 
scope located in a magnetic field. The conoscope forms 
an interference pattern consisting of symmetric hyperbo- 
las [Fig. 1 (c)J due to the birefringence of the nematic 
liquid crystal.12 The interference pattern rotates with 
the rotation of the director. If the rotation angle of the 
interference pattern is 0 and that of the director at z =0 
is 9m, then13 

-       2sin0m  
a" *    2E(smOm,K/2)-F(sin9m,Tc/2), 

where E(sm9m,x/2) is the complete elliptic integral of 
the second kind. Thus the director's rotation angle can 
be obtained by measuring the rotation angle of the in- 
terference pattern. To do this, the interference pattern is 
imaged in a charge-coupled-device array camera which 
is connected to an Imaging Technology FG-1024 image 
processor. The image of one of the hyperbolas corre- 
sponding to the lowest light intensity is stored and the 
director orientation obtained later by fitting a hyperbolic 
curve to the intensity profile and then extracting the 
principal axis. This gives 0, and hence by Eq. (8), 9m. 
The magnetic field is provided by an electromagnet 
driven by an amplified signal from a digital-analog con- 
verter in the personal computer. The time intervals of 
the dichotomous noise are obtained from Poisson-dis- 
tributed random numbers. 

Table I gives the values of d, TO, and Hc for the sam- 
ples we used in our experiment. The Hc values were ob- 
tained by measuring the director orientation as the ap- 
plied dc magnetic field was varied and then fitting Eq. 
(4) to the data. The relaxation time and the sample 
thickness were obtained from the measured Hc and Eq. 
(3). The parameters £a, X|, and ^22 for MBB A were 
taken from Ref. 13. 

In order to use the optical technique to determine the 
molecular orientation, the initial angle between the di- 

TABLE I. Characteristics of the three samples used in our 
experiment. 

Sample d (/im) ro (s) He (G) 

143 
178 
158 

50.3 
77.5 
61.3 

373 
301 
338 

592 
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FIG. 2. Typical probability density functions for MBBA 
when driven by dichotomous noise with h -1.09 and «5-0.225: 
Solid lines are experimental measurements, dotted lines analyt- 
ic results, and dashed lines the rotation angles under h + S and 
h-S. (a) yro-0.414, (b) yro-0.836, and (c) yro-4.182. 
Here My is the correlation time of the noise signal. 

rector and the magnetic field was —88° rather than 90°. 
If the initial angle was 90°, as assumed in the analytic 
calculation, the initial orientations of the molecules 
would be in metastable equilibrium within ±60 (60 

< 0.5°) of the x axis. Subjected to a large enough mag- 
netic field, molecules would rotate both clockwise and 
counterclockwise depending on their original orienta- 
tions. The interference pattern would be destroyed and 
the optical technique could not be used. 

A typical set of probability density functions of the ro- 
tation angle of the director is shown in Fig. 2 for the 
same noise amplitude but different correlation times for 
h — 1.09. Each probability density function was obtained 
from about 10 h of data acquisition with 30 s between 
each data point (1200 points total). The analytic proba- 
bility density functions were calculated from the model 
of Horsthemke et al.5 The simulation density was calcu- 
lated from a time series of length 80000r0, based on Eq. 
(6) and an initial angle of ~2°. 

The phase diagrams are displayed in Fig. 3, along with 
the analytic and simulation results. In the analytic cal- 
culation, transitions occur when the density at one end of 
the support changes from infinity to zero.5 However, the 
observed transitions in both the experiment and the 
simulation were not as sharply defined. Therefore, we 
chose to mark the experimental transitions by displaying 
only points that were clearly in one state or the other. 
Figure 3(a) shows the experiment definitely disagrees 
with the analytic results for S < 0.15, while showing 
much better agreement with the simulation. The analyt- 
ic results, simulations, and the experiments for Fig. 3(a) 
all show not only the intuitively expected bimodal (small 
jT0, with divergences at each end of the support) and 
unimodal (large yro) densities, but also a nontrivial bi- 
modal intermediate state. The deviation of the simula- 
tion and the experimental transitions from those of the 
analytical results [Fig. 3(a)], in particular, can be attri- 
buted to both the approximation sinöcosö^ö— y 03 of 
the analytic calculation and the nonzero initial angle in- 
troduced in the simulation and the experiment. 

A comparison of the experimentally observed transi- 
tion boundary for h —0.905 with the simulation results is 
given in Fig. 3(b). (The analytic calculation in this pa- 
rameter range is not available yet but is in progress.14) 
The bimodal intermediate states were not observed in the 
experiment; rather we observed transitions from bimodal 
states directly to unimodal states. This gives rise to a 
large discrepancy between the experimental and simulat- 
ed transition to the unimodal states when <5 exceeds 
-0.2. 

No evidence of soft-mode transitions (in which the ex- 
trema of the density function coalesce or split) were ob- 
served in a limited number of experiments for h > 1.2, 
whereas they appeared prominently in the analytic phase 
diagrams.5 Simulations do show soft-mode transitions, 
though they are not as easy to detect as those in the ana- 
lytic study and they have been found only at higher <5 

A-88 593 



VOLUME65, NUMBERS PHYSICAL REVIEW LETTERS 30 JULY 1990 

/   -   *• / y 

T 
,/ 

o   f: 

JT 

yr 

FIG. 3. Phase diagrams. + indicates a definite bimodal 
state is observed; o, intermediate state; *, unimodal state, (a) 
h -1.09, solid lines are from sample 1, dashed lines from sam- 
ple 2. (b) A-0.905, data are taken from sample 3. The 
dashed curves are from the analytic solution to the model (Ref. 
5), the solid curves are from the simulations. The curves are 
not fits to the data, there being no independently adjustable pa- 
rameters, as described in the text. Error bars indicate the er- 
rors in the predicted transitions due to the uncertainty in Hc. 
Insets: Representative analytic probability densities for (a) and 
probability densities from the simulations for (b) in the 
different regions of the Ä-yro plane. 

and h. We believe that these discrepancies may be due 
to the use of the small-angle approximation in the ana- 
lytic calculation. Further work is in progress to deter- 
mine the true large-/! phase diagram. 

In summary, our experiment has confirmed the main 
predictions of the model of Horsthemke et al.5 for the 
effects of a specific type of colored noise on a real physi- 
cal system. The observed transitions are in agreement 
with simulations based on the model for h -1.09. The 
discrepancy in the phase diagram for h -0.905 for large 
noise amplitude ^ 0.2) [Fig. 3(b)! suggests that a 
more complete u. .-.=; .-nay be necessary to fully account 
for our results. Such a model could include spatial 
effects across the x-y plane,1516 and more realistic 
boundary conditions, in which the strict 0(z - ± dl 
2) —0 is relaxed to allow for some response to the fluc- 
tuations at the surfaces. 

We thank Werner Horsthemke for bringing this prob- 
lem to our attention, and Stuart Collins and David 
Johnson for helpful discussions. This work was support- 
ed by the Office of Naval Research, under Contract No. 
N00014-86-K-0071 and Grant No. N00014-89-J-1352, 
and by an Ohio State University Small Grant and a 
Graduate Student Alumni Research Award. 
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Abstract. - Space-time diagrams are used to analyze the dynamics of the liquid-crystal smectic C 
director in two-dimensional shear. We find a steady-state ring pattern only persists if there are 
no broken rings. A pair of defects, disclinations, is created when a ring breaks. With broken 
rings, the pattern dynamics is a sensitive balance between phase winding by shearing and 
unwinding by defect motion. Because the film is a 2-d elastic medium, low-frequency elastic 
osculations occur in the ring pattern in the absence of shear. Using dimensional analysis and 
measurements of the in-plane orientational diffusion constant, estimates are obtained for an 
in-plane elastic constant and rotational viscosity that are consistent with bulk 
measurements. 

In recent years, new ideas have emerged in the understanding of fundamental and 
universal features of the dynamics of macroscopic system driven far from equilibrium by 
external fields [1]. Particular attention has been paid to systems that exhibit spatial patterns 
at a bifurcation. Examples of such systems are: ferrofluids in electric or magnetic fields [2] 
and thermal [3] and shear instabilities in simple [4] or complex fluids such as liquid 
crystals [5]. Space-time diagrams are a useful experimental tool to obtain quantitative 
information of the time evolution of simple spatial patterns. In this paper, we report 
experimental results of the space-time behavior of freely suspended smectic C liquid-crystal 
films in circular shear. 

Nematic liquid crystals are anisotropic 3-dimensional liquids characterized by an optic 
axis, n, whose coupling to external forces is well known [6]. With modern image analysis 
techniques, their highly contrasted optical patterns observed with a polarizing microscope 
are an ideal source of quantitative information for such nonlinear, nonequilibrium processes 
as  electrohydrodynamic  convection [7]  and  directional  growth [8].   However,  far  from 

(*) Present address: Department of Physics, Princeton University, Princeton, NJ 08544, USA. 
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equilibrium, the 3-dimensional fluidity and strong coupling between n and external forces 
typically result in complicated patterns not easily described in quantitative terms. For this 
reason, we chose freely suspended films of smectic C liquid crystal that have a microscopic 
structure of parallel layers and are 2-d anisotropic liquids in the plane of the layers [6]. 

In smectic C, the molecular long axis (roughly speaking parallel to n) is at an angle 0 to the 
layer normal. To conserve layer spacing, e is constant at fixed temperature, however, 
cooperative rotations in the plane of the layers are allowed. Thus, a 2-d director, c, is 
sufficient to describe macroscopic changes in molecular orientation in the smectic C phase. 
While 3-d nematic liquid crystals have the symmetry n+* - n, the layer structure in smectic 
C liquid crystals distinguishes between c and - c. Nevertheless, it has been formally shown 
for an ideal smectic C geometry—dislocation-free parallel layers—that the curvature 
elasticity [9] and hydrodynamics [10] for c is identical to that for n constrained to 
2-dimensions. As the magnitude of c is constant at fixed temperature, it is characterized by a 
phase variable, <P, that depends on     ace and time. 

Here, we investigated the phase winding regime of smectic C liquid crystals in a 
2-dimensional shear field Ü [11]. A glass needle with tip diameter 2r0 ~ 150 am is inserted into 
the center of a circular film of radius R ~ mm. Needle rotation at constant angular velocity 
exerts a shear on the film. Starting from a uniform c, the initial director response to shear is 
continuous rotation of c at the needle (phase winding) resulting in the appearance of 
concentric rings when the film is observed in an optical microscope with crossed 
polarizers [11]. There is no threshold for ring formation. 

Freely suspended smectic C films in 2-d shear, Q, were first studied by Cladis et al. [11]. 
They studied the structure of the ring pattern and observed that it could be destroyed by 
ring breaking resulting in disclination pair creation and subsequent phase unwinding. Using 
image analysis and 1-d space-time (r-t) diagrams, the purpose of our experiments is to 
address the question: is there a steady state for the ring pattern? The four r-t plots in fig. 1 

Fig. 1. - Space-time plots of ring pattern dynamics at different shear. In the images, the vertical axis is 
a diameter of the film and is 1.57mm. In a) v = 0/2- = 0.6s"1 and the horizontal (time) axis covers 
M = 194s; b) v = 0.6s"', A< = 385s; c) v = 1.2s"1, At = 1000s; and d) v = 3.0s_1. M = 500s. 
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give an overview of ring patterns observed at different shearing rates. In fig. 1, t is the 
horizontal axis and r, the vertical axis, is a diameter of the film. The needle is the black 
horizontal band in the middle of each picture. 

To optimize 2-d spatio-temporal behavior and minimize boundary effects at the top and 
bottom film-air boundaries [12], films of thickness e - (15 - 20) am ~ 5 103 layers and 
diameter 2R = 2. 8 mm are used. The material is 10E6 (4-hexyloxyphenol 4'-decyloxy- 
benzoate) [13] which exhibits the smectic C phase between 43.5 °C and 78.3 °C. Above 
78.3 °C, continuous rotational symmetry in the plane of the layers is restored. This is the 
smectic A phase that is also layered. Experiments are carried out at fixed temperature 
T = 73 °C. 

In polar coordinates (r, £) the director c has two components that can be expressed in 
terms of a phase [11] <P(r, $, t) as c = (costf>, sin#). At r = R, <P = 0. Every 2- rotation of the 
needle results in a 2r. increase in $ at the needle compared to the boundary R. Lines of 
constant <P have circular symmetry about the center of the film. When <P is perpendicular or 
parallel to the polarizers, a dark ring is observed by a videocamera attached to a polarizing 
microscope. Because of the high symmetry of the pattern, real-time image processing is used 
to study the dynamics of <P by space-time plots with the sampling space a diameter of the film 
(fig. 1). We now describe the time dependence of <P as a function of shear. 

At a given needle rotation rate, Q, <P continuously increases in time at r0 with <P decreasing 
logarithmically [11] with distance from r0. At R, <P = 0. In fig. la), fl/2- = v = 0.6 s"1. It is 
clearly observed that a line of constant <P starts at the needle, a source for the pattern. Figure 
2 shows that the radial distance from the needle edge for a line of constant <P initially grows 
like \ft, where t is time, after which saturation occurs. The time to reach saturation, rs, is 
shorter for larger v: l/rs ~ 0.013v. 

Figure 16) is also for v = 0.6s-1 with 385 s along the time axis. Here, a ring has broken 
before saturation leading to oscillations in the pattern. Eventually, one of a pair of 
disclinations reaches the needle, resulting in phase unwinding and destruction of the 
saturated state [14]. Thus, a disclination at the needle is a sink of <P even though the needle 
still rotates. The ring oscillation amplitude is small in fig. lb) and larger in fig. lc) where the 
time axis is now 1000s and v = 1.2s"1. 

In fig. la), a steady-state regime persists as long as there are no broken rings. A broken 
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Fig. 2. - Growth and saturation of a line of constant phase <P, ie. one of the lines shown in fig. la). The 
slope in the initial stage is 2.2-10"3 mm2/s. 

Fig. 3. - * at the film center as a function of time as the ring pattern relaxes after the needle has been 
pulled from the film. 
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Fig. 4. - Oscillations in the ring pattern when the needle is stopped but kept in the film. The pattern 
was generated at ■■> = 1.2 s"1. 

ring destroys the circular symmetry of the ring pattern and oscillations are then observed in 
the space-time plots (fig. 16) and c)). The ring pattern is more robust when a ring breaks 
close to the needle (fig. lc)) than when it breaks further from the needle (fig. 16)). 

In fig. Id), v = 3s"1. Here, more than one pair of defects has been created in the film 
before saturation is reached. Local phase winding and unwinding is more rapid. The 
coexistence of these two competing mechanisms results in irregular sequences of phase 
winding and unwinding and ring breaking creating more disclination pairs. Sometimes, the 
ring pattern completely disappears from the film. These processes occur irregularly in space 
and time suggesting a picture of spatio-temporal intermittency. 

The dynamics of 0 is characterized by diffusion of the director phase with diffusion 
constant D0, that is the ratio of an elastic constant K (dyn) to the rotational viscosity, 
Yi (dyn/cm2 /s = P): D0 = K/yx. A way to measure D0 is to remove the needle from the film 
and measure the phase unwinding process [11]. The space previously occupied by the needle 
is replaced by a circular region of uniform <P that rotates in time as rings vanish at the center 
of the film. 

After phase winding, we removed the needle from the film and measured the time 
dependence of <P at the center of the film. Figure 3 shows <P at the film center as a function of 
t. Inset in fig. 3 is a typical binarized r-t plot with the vertical axis of the plot a film diameter. 
From such measurements, we found for 10E6 that D0 = 2 ± 0.1 10~4cm2/s. In another 
liquid-crystal compound (TB9A) with a higher-temperature smectic C phase (170 °C), Cladis 
et al. [11] found D0 = 1.3-l(T4cm2/s. 

If the shearing process is stopped before phase saturation, the number of rings does not 
change but their size increases until the whole film is filled: there is a dilation of existing 
rings. When the needle is stopped and retained in the film after saturation is reached, rings 
dilate and contract in phase (fig. 4). In fig. 4, the vertical axis is a radius of the film. After 
filtering, the power spectrum for a line of constant <P in fig. 4 shows a broad peak centered at 
v0~ 1/(90 ± 10 s). The oscillations are in phase along the radial direction leading to the 
picture that the ring pattern is an elastic medium with a frequency response v0 given by v0 = 
= D0/R2. Thus, with D0 = 2-10"4cm2/s and R = 0.14cm, l/v0 = 98s, the same order of 
magnitude as observed. 

We use dimensional analysis [6] to obtain an estimate for the magnitude of the elastic 
constant in smectic C: 

K 
fin Tr (1) 
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where Tc is the transition temperature to the phase where continuous rotational symmetry in 
the plane of the layers is restored and the microscopic layered structure is retained, the 
smectic A phase. kB is Boltzmann's constant, K is a Frank elastic constant and dc is the layer 
spacing at Tc. Putting Tc = 78.3 °C = 351.3 K, the transition temperature from smectic A to 
smectic C, d0 = 31.5 Ä, the layer spacing in 10E6[13] at fc into eq. (1), we obtain 
K~ 1.5 10"7dyn. From the measured diffusion constant, then y, — 7.7-10 "4 P. We note that 
while these estimates for K and y\ are smaller than found in nematic liquid crystals, this is 
consistent with bulk measurements for K and yt on oriented nematic and smectic C 
phases [15]. 

In conclusion, using space-time diagrams, we investigated the phase saturation and 
relaxation of the director in freely suspended circular smectic liquid-crystal films in 
two-dimensional shear. We found that a steady ring pattern persisted as long as there were 
no broken rings. Spatio-temporal intermittency is observed when several rings are broken, 
resulting in the creation of disclinations that act as sinks for the pattern. In the absence of 
shear, we observed low-frequency relaxation oscillations in the ring pattern. Dimensional 
analysis combined with measurements of the director diffusion constant gives estimates for K 
and Yi consistent with bulk measurements on oriented smectic C samples. 

* * * 
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The use of formaldehyde-killed single-cell organisms as scattering particles for laser Doppler 
velocimetry studies in water and salt solutions is discussed. Advantages over traditional 
scattering particles include ready availability in large quantities, uniformity in size, 
monodispersity, and the ability to stay suspended in solution for several days. The tracers are 
colloidal sols for a wide range of densities of aqueous solutions. The microorganisms can be 
easily stained with a large variety of fluorescent and nonfluorescent dyes before they are used 
as tracer particles. 

I. INTRODUCTION 

Laser Doppler velocimetry (LDV) is a well-established 
and widely used technique in fluid dynamics studies. One of 
the primary difficulties with LDV is in finding suitable scat- 
tering particles for each application. In our case, we are us- 
ing LDV to study spatial and temporal properties of the flow 
that precedes the onset of weak turbulence in a fluid con- 
tained between eccentric cylinders with the inner cylinder 
rotating. The outer cylinder, through which the laser beams 
and the scattered signal must pass, is 1.7 cm thick glass. This 
is a necessary feature of the design, but it introduces a few 
difficulties. First, the curved surfaces of the cylinder intro- 
duce beam path distortions and second, the air-glass and 
water-glass interfaces scatter the incident laser beams. 
These distortions and scatterings drastically decrease the 
signal-to-noise ratio. We found it impossible, under these 
conditions, to work in a LDV backscattering mode, and a 
forward scattering mode was not optimized. We therefore 
had to introduce a fluid between the cylinders, and on the 
outside of the glass cylinder, that provided refractive index 
matching with the glass. Unfortunately the chosen fluid was 
incompatible with the usual scattering particles, thus forcing 
a search for new ones. We evaluated a number of biological 
particles with seemingly appropriate characteristics and 
found several that worked extremely well. We will discuss 
the specific properties of the biological particles we have se- 
lected, compare our LDV results with previous work em- 
ploying other techniques, and suggest further applications of 
these particles. 

II. EXPERIMENTAL APPARATUS 

The cylindrical annulus used in the experiment has in- 
ner and outer radii of 4.486 and 5.080 cm, respectively. The 
inner cylinder is stainless steel and the outer cylinder is pre- 
cision bore glass tubing.' These cylinders are surrounded by 
a tank consisting of a stainless steel frame supporting optical 

quality glass plates. Backscattering LDV was achieved by 
mounting the transmitting and receiving optics together on a 
motor-driven track, which allows the sample volume to be 
scanned vertically through the system. The backscattering 
mode is convenient for setting up a particular flow state; 
however, the forward scattering mode was generally used to 
obtain the highest signal-to-noise ratio in detailed studies. 
To optimize the forward scattering signal, the fluid in the 
tank and in the space between the cylinders must have an 
index of refraction of 1.47 to match that of the glass cylinder. 
Preferably this fluid should be nontoxic, noncorrosive, and 
have nearly the same dynamical parameters as water. We 
employed a solution of aqueous Nal (~ 1.5 gm Nal/cm3 of 
distilled water) .2 If necessary, the salt concentration was ad- 
justed by adding very small amounts of solid Nal until good 
index matching was achieved. The specific gravity of the 
fluid is 1.77, and the kinematic viscosity is ~1.02x 10~2 

cmVsec. The fluid is nontoxic and does not detectably react 
with stainless steel, glass, or plastic. The iodine tends to pre- 
cipitate over long periods of time, but the addition of ~ 0.02 
g of ascorbic acid per cubic centimeter of fluid will cause it to 
dissolve. 

Once we chose the Nal solution as our working fluid an 
appropriate seed particle was needed. The standard ones 
were not acceptable. Polystyrene spheres are too light (spe- 
cific gravity = 1.05) and titanium dioxide and other paint 
pigments are either too heavy and sediment too rapidly, or 
they have been found to clump. There were several criteria 
for selecting new tracer particles. We wanted particles with 
diameter close to the 632.8 nm wavelength of light from our 
He-Ne laser. The particles had to be stable in the aqueous 
Nal solution and be as close as possible to the density of the 
working fluid in order to reduce sedimentation and to ensure 
close tracking of the fluid velocity fluctuations. In addition, 
the particles of a given type had to be spherical, monodis- 
perse, and as homogenous as possible in size, yet a range of 
sizes should be available so that optimum conditions could 
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be achieved for either forward or backscattering LDV 
modes. Most of these criteria were met with certain biologi- 
cal particles. For these experiments we used three different 
kinds of formaldehyde-killed, single-celled organisms as 
tracer particles, giving us a range of sizes: a bacterial strain, 
two yeast strains, and conidia from a mold (Fig. 1). 

The bacterium, Staphlyococcus epidermidis OSU253, 
was obtained from a local culture collection.3 A small quan- 
tity was inoculated into 50 ml of LB broth medium* and 
incubated at 37 °C for 18 h with shaking at 250 rpm. The 
culture was removed from the incubator and 5.5 ml of 37% 
formaldehyde solution was added. The culture was swirled 
to mix the formaldehyde and then left at room temperature 
for 2 h. The fixed cells were harvested by (i) centrifuging at 
6000 Xg for 10 min, (ii) decanting the formaldehyde and 
culture medium, (iii) resuspending the cells in distilled wa- 
ter to wash away residual culture medium, (iv) centrifuging 
again at 6000Xg for 10 min, and, finally, (v) resuspending 
the cells in 5 ml of distilled H20. Dilutions of this suspension 
were used as tracer particles. 

We used two strains of baker's yeast: Saccharomyces 
cerevisiae D273.10B,5 and S. cereuisiae C276.4A.6 These 
strains were inoculated into 100 ml of YPD broth medium7 

and incubated for two days at 37 °C with shaking at 200 rpm. 
The cultures were harvested and prepared for use as seed 
particles as described for the bacteria. The C276.4A yeast 
was more spherical than the D273.10B strain. 

The conidia we used were from Aspergillus nidulans 
R153.8 This strain carries a mutation that causes white 
conidial color. Conidia were inoculated into a petri dish con- 
taining YG agar medium7 and grown for five days at 37 "C. 
The conidia were harvested by adding sterile glass beads 
(4 mm diam) to the petri dish and shaking gently. Then 15 
ml of a 0.15 molar solution of NaCl and 0.1 % (by volume) 
Tween 80 was added.9 A. nidulans conidia cannot be killed 
by the simple addition of formaldehyde; we incubated them 
at room temperature for 16 h in YG broth7 and 1 //g/ml 
Myacide SP (Inolex) prior to formaldehyde fixation. The 
formaldehyde suspension was incubated for 2 h at room tem- 
perature and the conidia recovered and prepared for use as 
tracer particles as described for the bacteria. 
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FIG. 1. Phase contrast-enhanced (a, c. e. g) and bright-field (b. d, f, h) 
micrographs of the particles suspended in Nal solution. The bright-field 
micrographs approximate the interaction of light with the particles in the 
experimental system; the phase contrast micrographs are to aid in identify- 
ing the particles in the bright-field micrographs. From top to bottom: yeast 
C276.4A (a, b); yeast D273.10B (c. d); conidia (e. f); bacteria (g, h). At 
the right of each frame are 2.02 ^m diameter polystyrene spheres (arrows) 
to indicate scale. 

III. RESULTS 

The bacteria had an average diameter of 0.8 fim, the 
yeasts 4.2-5.1 //m, and the conidia 3.0 ^m, based on mea- 
surements of photographic images (Fig. 1). The concentra- 
tion of particles shown in Fig. 1 is much greater than that in 
the working fluid so that a good sample of the microorgan- 
isms can be seen. In our application there were about 3 to 10 
particles in the measuring volume to obtain optimal signal. 
The apparent densities of the organic constituents of the par- 
ticles, as judged by sedimentation equilibrium centrifugation 
and density gradient sedimentation in cesium chloride,10 

were 1.35-1.45 g/cm3. The microorganisms were all in a 
colloidal suspension in the Nal solution and there was no 
observable sedimentation over the course of five days. Like- 
wise, when the microorganisms were suspended in Nal solu- 
tions ranging from 1.37 g/cm3 to 1.84g/cm3andcentrifuged 
for 15 min at 12 000 X g, they could not be sedimented from 
solutions with densities greater than that of the organic com- 
ponents. Neither did the particles rise to the top of the solu- 
tion, as did the polystyrene spheres (density 1.05 g/cm1); 
instead, they remained in colloidal suspension. The rate of 
aggregation, which will enhance sedimentation, of un- 
charged lyophobic sols is inversely proportional to their ini- 
tial concentration. The aggregate half-life for the particle 
concentration used in our experiments is calculated to be 
about five days. In addition, all the microorganisms have a 
net negative charge on their surfaces"12 which will prevent 
clumping and further decrease the sedimentation rate.'' The 
particles will settle out of motionless distilled water within 
several hours, but may be kept in suspension indefinitely by 
even very mild agitation. 

The index of refraction of the yeast is 1.45, that of the 
conidia and bacterium is about 1.44. These values were de- 
termined by observing the organisms in a glycerol-water 
mixture under a phase contrast microscope. The index of 
refraction of the fluid is a known function of the concentra- 
tion of the glycerol in water. The percent by volume of glyc- 
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erol in the fluid was varied until the shade of the cell wall 
(likely the primary light scatterer in the particle) matched 
the shade of the surrounding fluid; the index of refraction 
was then determined to be equal to that of the fluid. 

The conidia had a tendency to clump somewhat because 
of the hydrophobic nature of their cell walls, a property not 
unique to the strain of mold we chose. The bacteria were also 
found to clump, but this could be alleviated by adding the 
ascorbic acid to the solution. This result is not surprising. 
The charged double layer on the bacteria that prevents ag- 
gregation is neutralized by positive ions in the solution, such 
as excess Na + . These ions will bind more readily to the 
ascorbic acid, preventing flocculation of the bacteria. The 
use of nonaqueous solvents such as alcohols, ketones, and 
hydrocarbons will dehydrate the cell walls of all the particles 
and cause them to stick together. It should be possible, how- 
ever, to use the particles in ethanol-water mixtures as long as 
the ethanol concentration is below 10%. 

The spectral results obtained using these particles were 
quite good and agree well with those of Gorman and Swin- 
ney.14 The system was kept in the concentric mode, with 
radius ratio of 0.883 and aspect ratio of 20, so comparisons 
could be made with their study. The data from all the parti- 
cles were obtained while the fluid was in a wavy vortex flow 
state with 17 vortices. The number of vortices was deter- 
mined by scanning the entire length of the fluid, while oper- 
ating in the backscattering mode, and noting the inflow and 
outflow boundaries on a strip chart recording of the analog 
output of the frequency tracker. Figure 2 shows typical spec- 
tra obtained using the various particles. Frequencies are nor- 
malized to the inner cylinder frequency, /, and the power is 
plotted on a log scale. The Reynolds number in all the cases 
shown here was 6.08Ä,., where Rc is the critical value for 

onset of time-independent Taylor vortices. The azimuthal 
wavenumber of the states shown is 6 and the fundamental 
frequency is clearly visible at 2.157/, several orders of mag- 
nitude above the background noise. Each spectrum was ob- 
tained by subdividing a 24 576 point time series into 24 equal 
segments, calculating a fast Fourier transform for each, and 
then finding the average. This technique reduced contribu- 
tions to the frequency spectrum from random fluctuations in 
the background noise and enhanced the signal-to-noise ra- 
tio. 

The primary peak in each spectrum corresponds to the 
frequency of traveling azimuthal waves passing a point of 
observation in the laboratory. The primary frequency we 
observe is 6% higher than the value obtained by Gorman 
and Swinney. The difference in fundamental frequencies 
may be explained on the basis of the work of King et al.'5 on 
wave speeds in circular Couette systems. The spatial state of 
a flow with traveling azimuthal waves is specified, in part, by 
the average axial wavelength, which is defined by 
A = 2H/N, where H is the height of the fluid contained 
between the cylinders and N is the number of Taylor vorti- 
ces. King et al. have found that there is a dependence of the 
primary wave speed on I; the difference between our I and 
that of Gorman and Swinney can account for about one- 
third of the difference in our fundamental frequency values. 
After the onset of wavy vortex flow, the azimuthal wave 
speed decreases monotonically with increasing Reynolds 
number." The lowest Reynolds number for which Gorman 
and Swinney present wave-speed data is ~9ARC. Our mea- 
surements were made at 6.0SRC, which will again have the 
effect of raising the fundamental frequency we observe. 

The background noise remains at about the same level at 
higher frequencies [Fig. 3(a) ]. Only a high frequency spec- 
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FIG. 2. Power spectra of the axial compo- 
nent of the velocity measured in the center 
of the gap between the cylinders using the 
following tracer particles: (a) bacteria; 
(b) yeast D273.10B; (c) yeast C276.4A; 
(d) conidia. The data were obtained in the 
forward scattering mode. The fundamen- 
tal frequency at 2.157/ is labeled as/,; all 
other frequency components are linear 
combinations of/ and/, harmonics or 
aliases. 
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FIG 3 Power spectra of the axial compo- 
nent of the velocity measured in the center 
of the gap with the following scattering 
particles: (a) yeast C276.4A with high 
Nyquist frequency; (b) bacteria and (c) 
yeast D273.10B in the backscattering 
mode; (d) yeast D273.10B dyed with Saf- 
franin in the backscattering mode. 

trum with yeast C276.4A is shown, but it is representative of 
the results obtained for all the different particles. The high- 
est Nyquist frequency we used is still well below that at 
which Brownian motion may introduce error in the velocity 
measurements,16 and indeed we see no such contribution in 
the spectra. Figures 3(b) and 3(c) show spectra using the 
bacterium and yeast D273.10 B as tracer particles, respec- 
tively; in both cases the data were obtained in the back- 
scattering mode. The signal-to-noise ratio of the fundamen- 
tal peak has dropped slightly more than an order of 
magnitude; this is consistent with the Mie scattering theory 
for particles of these dimensions.'7 The primary peak is still 
clearly visible at least four orders of magnitude above the 
background noise, but the secondary peaks are harder to 
discern. We dyed each of the biological particles with Saf- 
franin, a red dye, to increase their reflectance of the red laser 
light. The resulting spectra showed little change from the 
undyed case, with perhaps a slight difference in favor of the 
dyed particles when using the backscattering mode. Again a 
representative spectrum of the dyed particles is shown [ Fig. 
3(d) ]; the results were similar in all cases. 

IV. DISCUSSION 
The organisms we selected are certainly not the only 

ones that could yield potentially useful tracer particles. We 
rejected the use of blood cells and paniculate suspensions 
such as milk because they are heterogeneous in size, and they 
are either not particularly spherical or they do not maintain 
their shape in this application. The organisms we have cho- 
sen are encased in a rigid cell wall and can maintain their 
shapes under a variety of conditions: in fact, drastic physical 
or chemical means are required to break the walls, even of 
the dead organisms. The cell walls are molecular cages, com- 

posed mostly of polymers of sugars or their derivatives, that 
allow the passage of small molecules. The exact size of the 
molecules varies with the particular cell wall, but most walls 
will allow the diffusion of molecules with a molecular weight 
of a few thousand. In the living cell the passage of small 
molecules and ions is regulated by a membrane that lies in- 
side the cell wall; the integrity of this membrane requires the 
expenditure of energy and it ceases to function upon the 
death of the cell. The formaldehyde kills the cells and con- 
verts them, for the present purposes, to rigid molecular cages 
containing inactivated, high-molecular weight cellular con- 
stituents. We will refer to the interior contents of the cell as 
the cell matrix, the major components of which are DNA, 
cellular proteins, and RNA. retained in their normal struc- 
tures. The free exchange of small molecules, such as the salt 
water, through the cell wall and into the cell matrix allows 
the density of the particles to be matched fairly closely to 
that of the working fluid. This density matching may play a 
role in permitting the long term suspension of the particles. 
Fluid exchange is by simple diffusion through the cell wall 
and matrix. For ions the size of Na" and I", equilibrium 
should be established within seconds. 

The presence of the cellular matrix within the killed 
cells allows its exploitation in staining the particles. Since 
formaldehyde killing preserves most of the intracellular 
structure of the organisms, dyes that stain specific cell con- 
stituents can be used. For example, one could stain the sur- 
face or various interior components of the cells with fluores- 
cent dyes such as acridine orange, aniline blue, DAPI 
(blue), rhodamine, or fluorescein that have affinity for car- 
bohydrates, nucleic acids, or proteins. The cell matrices may 
also be stained a particular color to reduce their transmit- 
tance and increase the reflectance of the specific laser light 
being used. As stated earlier, we used Saffranin for this pur- 
pose. 

3460 Phys. Fluids, Vol. 31, No. 12, December 1988 A-98 Jacobs, Jacobs, and Andereck 3460 



It is not difficult to achieve a homogeneity in the size of 
the cells. Certain organisms, grown under defined condi- 
tions, will produce populations of cells of about the same 
size. Since the cells reproduce by dividing, and they accumu- 
late mass between divisions, cells that have just divided 
("young" cells) tend to be smaller than cells just about to 
divide ("old" cells). Most of the heterogeneity of size in a 
population will be due to the distribution of young and old 
cells. It is important to pick an organism whose size differen- 
tial is not extreme. Not all strains of a given organism have 
the same growth characteristics or cell shape; for example, 
the one yeast strain we worked with was more spherical than 
the other. One must not assume that all microorganisms 
within a particular class will work equally as well. 

A most attractive benefit of these seed particles is that 
they are extremely inexpensive. The procedures for growing 
the organisms and preparing them for use are standard in 
most microbiology laboratories. Strains of organisms can be 
obtained locally from departmental culture collections or 
from the collections of individual investigators. Sufficient 
quantities of particles for several months work can be grown 
in a day to a week, depending on the organism, using less 
than 100 ml of standard microbiological media. Processing 
of the samples (harvesting, killing, washing, and delivery) is 
accomplished in less than 3 h; most ofthat time is occupied 
in the 2 h formaldehyde-killing step that requires no manipu- 
lations. It is also possible to filter the index matching fluid 
containing the particles through an inexpensive membrane 
filter to remove the biological tracer particles, and any stray 
dust or dirt, so that a different type of particle can be substi- 
tuted. A similar filtering sytem, or a centrifugation process, 
may be used to recover the particles for reuse in an open flow 
system. However, the labor involved to recover the particles, 
in contrast to the minimal expense of replacing them, may 
not be cost effective. 

It should be noted that although the particles we used 
had been killed with formaldehyde, they were chosen from 
organisms that pose minimal health hazard and are found in 
the normal working environment. Before biological particles 
are used, even in the formaldehyde-treated form, prudence 
would dictate consulting with a knowledgeable biologist 
concerning possible health risks involved in dealing with the 
live form of the organisms. This point cannot be stressed 
enough, since conidia, in particular, are resistant to killing. 

We have demonstrated that light-scattering particles 
derived from several microorganisms are useful in LDV 
studies of fluid flow. We evaluated these particles under very- 
specific conditions, i.e., in a concentrated Nal solution in a 
circular Couette flow system. However, there are several 
reasons that these particles are likely to be useful for study- 
ing flow of a wide range of aqueous fluids. First, the particles 
themselves are compatible with many aqueous solutions. In 
fact, the organisms from which they are derived thrive in 
aqueous environments. Second, the particles can be suspend- 
ed in distilled water or dilute solutions of salts and the set- 
tling time is measured in hours per centimeter. They can be 
maintained in suspension by minimal agitation. The parti- 

cles behaved as colloids in a wide range of concentrations of 
Nal solutions with virtually no observable sedimentation 
over several days. These observations suggest that the parti- 
cles may be effective in LDV scattering in aqueous fluids of 
vastly different specific gravities and compositions. Third, 
the particles can be very useful in applications where expen- 
sive fluorescent tracers are currently employed. Finally, the 
particles we used were not selected after an exhaustive 
search. Rather, they were derived from conveniently avail- 
able microorganisms that were likely to meet the initial crite- 
ria we established. Since all four organisms we tested gave 
acceptable LDV signals, there may be many more potential- 
ly useful light scattering particles currently residing in local 
microbiological culture collections. 
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Appendix B:  Invited Seminars, Colloquia and Conference Talks 

Invited Seminars and Colloquia: 

Eastern Michigan University 
University of Akron 
Duke University 
Ohio University 
Ohio State University 
Naval Surface Weapons Center 
Michigan State University 
ESPCI, University of Paris 
University of Michigan-Dearborn 
Kent State University 
Case Western Reserve University 
University of California-Santa Barbara 

Invited Conference Presentations: 

AAPT Summer Meeting, Columbus, Ohio, 1986 
Workshop at Les Houches, France, 1987 
Ohio Section APS Meeting, Akron, 1987 
National Science Teachers Association Area Convention, Columbus, Ohio, 1988 
Spring Meeting of the APS, Baltimore, 1989 
Aspen Center for Physics Workshop, Aspen, Colorado, 1989 
Gordon Research Conference, Ventura, California, 1992 
Conference on Nonlinear Problems of Hydrodynamic Stability Theory, Moscow, Russia, 1992 
Spring Meeting of the APS, Washington, 1992 
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